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Abstract
Polycystic Ovary Syndrome (PCOS) is the most common reproductive endocrine disorder in women of reproductive age. 
PCOS is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovary morphology. The PCOS is known 
for more than 100 years; however, many areas of PCOS such as diagnosis, etiology, clinical features, and treatment are 
still debatable. This review aims to provide an overview of the historical evolution, diagnosis, biomarkers, and etiologic 
associations of PCOS as of today. A brief review of publications on PCOS and our research experience on PCOS are combined. 
All available biomarkers/associations implicated with PCOS, like androgens (testosterone, free androgen index, DHEAS, 
androstenedione, dihydrotestosterone), LH, 17-OH Progesterone, anti-Mullerian Hormone (AMH), inhibin B, leptin, insulin, 
interleukins, advanced glycation end product (AGE), bisphenol A (BPA), kisspeptin, melatonin, etc., besides genetic and 
epigenetic factors, associated with PCOS are briefed, along-with our research experience. The most acceptable consensus 
in naming the syndrome is Polycystic Ovary Syndrome (PCOS) and consensus diagnostic criteria presently followed are 
Rotterdam 2003 criteria with phenotypic classification (NIH 2012 criteria). Ideal androgen, method of estimation and its 
cut-off value is still a subject of controversy. DHT, an androgen, seems promising. The best available biomarker associated 
with PCOS could be AMH. Environmental contaminants such as bisphenol A and AGEs, and endogenous factors such as 
kisspeptin and melatonin have strong association with PCOS. Epigenetic alterations affecting various pathways (metabolic, 
steroid biosynthesis, ovarian function, AGE/RAGE, AMPK, inflammatory, etc.) and pathogenic variants of various genes 
(INSR, IRS1, GHRL, LDLR, MC4R, ADIPOQ, UCP1, UCP2, UCP3, FTO, PCSK9, FBN3, NEIL2, FDFT1, PCSK9, CYP11, CYP17, 
CYP21, HSD17, STAR, POR, AKR1C3, AMH, AMHR2, INHBA, AR, SHBG, LHR, FSHR, FSH β, SRD5A, GATA4, THADA, YAP1, ERBB2, 
DENND1A, FEM1B, FDFT1, NEIL2, TCF7L2, etc.) in some PCOS cases may be linked as underlying etiopathology. PCOS is a 
complex heterogeneous disorder, with genetic susceptibility besides environmental and epigenetic influences.
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1. Introduction
Polycystic Ovary Syndrome (PCOS) is a complex 
reproductive disorder characterized by hyperandrogenism 
(hirsutism and/or high androgens), chronic oligo-
ovulation, or anovulation (oligomenorrhoea or 
amenorrhea), and polycystic ovary morphology 
(polycystic and/or enlarged ovary). It is the most 
common reproductive endocrine disorder in women of 
reproductive age and its prevalence is reportedly between 

8-15% of women of reproductive age and about 21% in 
high-risk women (e.g., infertility)1–3. Stein and Leventhal 
in 1935 first described the syndrome scientifically. They 
described clinical features associated with the condition as 
menstrual disturbance, infertility, and bilateral polycystic 
ovaries4. The characterization of the syndrome in past 
was challenging due to various defined criteria2,5,6. The 
worldwide commonly followed diagnostic criteria was 
Rotterdam criteria 20035. This approach was modified 
in 2012 (NIH 2012 criteria) and classifies PCOS cases 
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into four phenotypes, phenotypes A, B, C and D7. The 
pros and cons of various diagnostic criteria of PCOS 
can also be traced8. Presently, all three expert groups and 
others (international evidence-based guideline) have a 
consensus on following Rotterdam 2003 criteria with 
phenotypes i.e., NIH 2012 criteria9.

Hyperandrogenism is one of the essential features of 
the syndrome, but none of the recommendations precisely 
defined, in particular the cut-off values of clinical or 
biochemical hyperandrogenism. Even international 
evidence-based guideline suggests for calculated free 
testosterone, or free androgen index, or calculated 
bioavailable testosterone using Liquid Chromatography–
Mass Spectrometry (LCMS) or chromatography 
immunoassays methods; however, they were silent on 
cut-off levels. Rather, they recommend that laboratories
 should have their own reference range (cut-off value) 
based on levels from sizable normal women10. Similarly, 
recommendation for clinical hyperandrogenism is also 
vague. Committee suggests for a comprehensive history, 
and that physical examination should be completed for 
acne, alopecia, and hirsutism and, in adolescents, severe 
acne and hirsutism. For the assessment of hirsutism, the 
modified Ferriman Gallwey score (mFG) is preferably 
followed and a score ≥4-6 indicates hirsutism, depending 
on ethnicity10.

Although hyperandrogenism is important for 
diagnosis, it is rarely observed or poorly associated in 
Asians11–13. About 50% of PCOS are overweight and 
some are underweight. Overweight PCOS women are 
prone to have infertility, insulin resistance, impaired 
glucose tolerance, and endometrial hyperplasia14. Hence, 
there is a pressing need to understand the underlying 
mechanism of PCOS phenotype-wise. Before assigning a 
case as PCOS, one should distinguish between PCOS-like 
conditions secondary to congenital adrenal hyperplasia 
(non-classical/adult onset/atypical), androgen producing 
tumor, exogenous androgen exposure, Cushing’s disease, 
thyroid dysfunction, hyperprolactinemia, premature 
ovarian failure, etc.

Various biomarkers, other than androgens, such as 
AMH, LH, leptin, inhibin, etc., are implicated with PCOS. 
However, none yet has a high predictive value; hence, the 
diagnosis of PCOS solely depends on clinical judgment, 
and that may vary from person to person. There is a need 
to find out some promising diagnostic biomarkers for this 
syndrome. Identification of highly specific and sensitive 
biomarkers will help characterize the syndrome better. 

Based on the available literature, the target markers are 
AMH, DHT, leptin, kisspeptin, melatonin, etc. 

The underlying etiology of PCOS in humans remains 
unexplored leading to difficulties in treating/ managing 
the disorder; in fact, no specific targeted treatment is 
available. Although in experimental animals PCOS can 
be produced through prenatal androgen or bisphenol A 
exposure, this (perinatal androgen-induced) cannot be 
mimicked in humans (most environmental pollutants 
are estrogenic); hence, unlikely to be considered an 
etiologic factor. The cause of PCOS in humans seems 
to be extremely heterogeneous and expected to be 
associated with epigenetic (influenced by environmental 
factors) and genetic factors. The genetic etiology of 
PCOS has not been completely established despite some 
association studies15. Environmental pollutants also may 
play some role as endocrine-disrupting chemicals and 
disrupt ovarian and metabolic function, causing PCOS-
like abnormalities. Hence, it is important to explore the 
underlying etiopathology for genetic, epigenetic and 
environmental factors.

This review will provide an overview of the evolution 
of the syndrome with special reference to naming, 
diagnostic criteria, biomarker(s), and etiologic (genetic, 
epigenetic, and environmental) associations along with 
our research experience.

2. �Historical Perspectives of PCOS
The landmarks in the history of PCOS are summarized 
in Table 1. The first description of PCOS can be traced 
to 1721 from a case description of the disorder by 
Vallisneri16. Vallisneri (from Italy) described a woman 
with infertility, obesity, and a large white shiny ovary 
that was compared with a pigeon egg. The second 
description of the disorder can be traced to Chereau 
in 184417. Chereau (from France) described ovaries 
with the disorder as fibrous and sclerotic with hydropic 
follicles (sclerocystic ovary). Thereafter, various authors 
described ovarian pathology with the disorder as cystic 
degeneration of the ovary, hyperthecosis of the ovary, 
microcystic ovaries, etc18–20. All these older descriptions 
were focused on ovaries thus indicating ovarian pathology 
(either enlarged or polycystic or sclerotic) associated with 
the condition. However, the first scientific description 
of PCOS came from Stein and Leventhal in 1935 with 
the publication title “amenorrhea associated with 
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bilateral polycystic ovaries”4. Authors (from the USA) 
described seven cases of female infertility associated 
with bilateral enlarged polycystic ovary and menstrual 
disturbance (amenorrhoea or oligomenorrhoea) with 
a normal level of urinary 17-ketosteroids (to exclude 
congenital adrenal hyperplasia, androgen-producing 
tumor or obvious hyperandrogenaemia of any etiology) 
and gonadotropin (to exclude premature ovarian 
failure/menopause). The authors also described clinical 
findings like hirsutism, small breast, and small uterus. 
However, they did not give much importance to clinical/
biochemical hyperandrogenism in their paper. The 
authors also reported restoration of menstruation and 
fertility after wedge resection of ovaries4. The importance 
of clinical hyperandrogenism, including its association 
with hyperthecosis, was discussed in detail initially by du 
Toit21. Later, the disease was linked with the inappropriate 
secretion of gonadotropins as key parameters for diagnosis 
for a short period of time and was later abandoned22.

Since the first scientific description of PCOS by 
Stein and Leventhal in 1935 i.e., more than 85 years ago, 
there has been no consensus on the name or diagnostic 
criteria until recently. Now, the syndrome is known as 
polycystic ovary syndrome and a consensus in diagnostic 

criteria has been arrived at by all the three expert groups 
(NIH, Rotterdam and AES)7,10. However, the syndrome 
is still published either as polycystic ovary syndrome 
or polycystic ovarian syndrome. The syndrome/disease 
was popular with various names from time to time and 
region to region since its landmark naming as Stein 
Leventhal Syndrome in 1935. Before 1935 the disease was 
named sclerocystic ovary18, hyperthecosis of the ovary19, 
microcystic ovary20 and, after popular Stein Leventhal 
Syndrome, as sclerotic polycystic ovary24, polycystic ovary 
syndrome25, polycystic ovarian diseases26, polycystic ovary 
disease27, polycystic ovarian syndrome,28 ovarian micro-
polycystic syndrome29, etc. At present, the syndrome is 
most acceptably known as Polycystic Ovary Syndrome 
(PCOS) although some still prefer to call a polycystic 
ovarian syndrome.

3. Diagnostic Criteria of PCOS
The diagnostic criteria of PCOS were debatable, until 
recently, as recommendations were somehow different 
with different PCOS working groups (Table 2). The first 
scientific diagnostic criterion on PCOS came from a 
consensus declaration of National Institutes of Health 

Table 1. Historical landmarks of polycystic Ovary Syndrome

Landmarks Author Year
First documented clinical description as case report of the disorder 
(obese woman with infertility and large white shiny ovary as like pigeon 
egg)

Vallisneri A16 1721

Fibrous and sclerotic ovary with hydropic follicle (sclerocystic ovary) Chereau A17 1844
Cystic degeneration of ovary Rokitansky C18 1855
Hyperthecosis of ovary Bulius and Kretschmar19  1897
Microcystic ovaries McGlinn JA20 1916
Amenorrhoea associated with bilateral polycystic ovaries/ Stein-
Leventhal syndrome (First scientific description of PCOS)

Stein and Leventhal4 1935

Polycystic ovaries, menstrual disturbances and hirsutism: hyperthecosis 
(importance of clinical hyperandrogenism)

du Toit DAH21 1952

Sclerotic polycystic ovary Davis CD, et al23 1956
Polycystic Ovary Syndrome Keettel WC24 1957
Polycystic ovarian disease Evans and Riley25 1958
Polycystic ovary disease Lambeth and Kintner26 1959
Polycystic ovarian syndrome Cook WS27 1965
Galactorrhoea and amenorrhea with polycystic ovaries Lavric MV 1969
Linked with inappropriate secretion of gonadotropins Yen SSC, et al22 1970
Ovarian Micro-polycystic syndrome Vokaer R28 1977
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(NIH) sponsored conference (The National Institute of 
Child Health and Human Development Conference of 
PCOS) in 1990; popularly known as NIH 1990 criteria2. 
The criteria are chronic anovulation (oligomenorrhoea/
amenorrhoea) and hyperandrogenism (clinical i.e., 
hirsutism/biochemical i.e., high testosterone). Both 
criteria are required for diagnosis but need to exclude 
congenital adrenal hyperplasia/androgen-producing 
tumor. Thereafter came ESHRE/ASRM-Sponsored PCOS 
Consensus Workshop Group diagnostic criteria in 2003; 
popularly known as Rotterdam 2003 criteria5. Criteria 
are oligo/anovulation, hyperandrogenism (clinical and/
or biochemical), and Polycystic Ovary Morphology 
(PCOM). Any two criteria are required for the diagnosis 
but after exclusion of other endocrinopathies with known 
etiologies like congenital adrenal hyperplasia, premature 
ovarian failure, hyperprolactinemia, thyroid disorder, etc. 
Next came Androgen Excess PCOS (AE PCOS) society 
2006 criteria (AE-PCOS 2006 criteria) which include 
hyperandrogenism (clinical/biochemical) and ovarian 
dysfunction (oligo/amenorrhoea) and/or polycystic ovary 
morphology (PCOM). Both the criteria are essential 
for PCOS diagnosis but after excluding disorders with 
known aetiologies and having similar characteristics such 

as oligo-ovulation and hyperandrogenism6,29. However, 
none of the criteria provided a cut-off value for either 
clinical or biochemical hyperandrogenism.

The NIH 1990 criteria seem inappropriate as they did 
not include polycystic ovary as criteria despite naming 
the syndrome as polycystic ovary syndrome (PCOS). The 
NIH 1990 criteria also exclude many PCOS cases; those 
without hyperandrogenism and others without ovulatory 
dysfunction. PCOS cases without hyperandrogenism 
are very common in southeast Asian countries30,31. 
The AE PCOS 2006 criteria are also inappropriate as it 
excludes all PCOS cases with normal androgen which 
are common PCOS phenotype in southeast Asia30,31. AE 
PCOS society in 2015 again modified their diagnostic 
criteria by agreeing with Rotterdam criteria32,33. Presently, 
all three expert groups and most related national societies 
are in agreement with Rotterdam 2003 criteria with 
phenotypic classification i.e., NIH 2012 criteria7,9. Serum 
17-hydroxyprogesterone and Anti-Müllerian Hormone 
(AMH) are also important and useful for exclusion or 
determining a diagnosis of PCOS. Also, recommended for 
calculated free testosterone through LC-MS or calculated 
bioavailable testosterone through chromatography 
immunoassays methods or FAI as these are more sensitive. 

Table 2. Diagnostic criteria of Polycystic Ovary Syndrome

Parameters NIH 1990* and 2012 Rotterdam 2003# AES 2006+ and 2015
HA: Clinical and/or 

biochemical
 HA HA HA

OA/OD/Ovarian dysfunction OA OD Ovarian dysfunction (OD 
and/or PCOM)

PCOM No PCOM Included with criterion 2
PCOS Diagnosis Both Required Any two required Both required

Exclusion Exclusion of other etiologies 
of androgen excess and 

anovulation

Exclusion of other etiologies 
of androgen excess and 

anovulation

Exclusion of other etiologies 
of androgen excess and 

anovulation
Remarks Both criteria are necessary 

for diagnosis (PCOM was not 
considered as criteria)

Two of three criteria are 
necessary for diagnosis

Hyperandrogenism is must 
and 2nd and/or 3rd criteria is/

are required for diagnosis
Modifications NIH 2012: adopted 

Rotterdam 2003 criteria 
plus identification of 

phenotypes (vide Table 3)

Merged with NIH 2012 
criteria

High AMH added as another 
optional criteria for 2nd criteria

AMH value of >10 ng/ml 
absolute; >7 ng/ml likely; >5 

ng/ml may be

* National Institute of Child Health and Human Development (NICHD)/NIH 1990 Guidelines
# European Society for Human Reproduction and Embryology and American Society for Reproductive Medicine (ESHRE/ASRM) or Rotterdam 2003 
Guidelines
+ Androgen Excess Society (AES) 2006 Guidelines
HA (hyperandrogenism), OA (oligo-anovulation), OD (ovulatory dysfunction), PCOM (polycystic ovarian morphology)
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The value of measuring levels of androgens other than 
these three in patients with PCOS is relatively low.

Present consensus in PCOS diagnostic criteria 
is the Rotterdam 2003 criteria with modifications in 
the form of phenotypic classifications i.e., NIH 2012 
criteria7,9. This approach classifies PCOS cases into four 
phenotypes. These are phenotype A (hyperandrogenism, 
ovulatory dysfunction, and polycystic and/or enlarged 
ovary), phenotype B (hyperandrogenism and ovulatory 
dysfunction), phenotype C (hyperandrogenism and 
polycystic and/or enlarged ovary), and phenotype D 
(ovulatory dysfunction and polycystic and/or enlarged 
ovary; Table 3).  Both NIH and AE PCOS societies rectified 
their mistake by adopting Rotterdam 2003 criteria and 
classifying them into 4 phenotypes9,32. However, none 
of the criteria precisely defined clinical or biochemical 
hyperandrogenism yet9. 

4. Hyperandrogenism

4.1 Clinical Hyperandrogenism
Manifestations of clinical hyperandrogenism are 
hirsutism, acne, androgenic alopecia, acanthosis nigricans, 

and virilization. Hirsutism is defined as excessive 
growth of terminal hair in women. Hirsutism severity 
is determined by using various visual scoring systems 
of hair growth, most commonly using the Ferriman and 
Gallwey scale, and a score of 9 or more is considered 
clinical hyperandrogenism34. However, none of the PCOS 
diagnostic criteria have provided a quantitative value 
(cut-off value) for clinical hyperandrogenism for the 
diagnosis of PCOS. The reasons are: 
•	 Normative data in large populations are lacking; The 

assessment is subjective; Rarely do physicians follow 
the scoring method; Often treated well before the 
evaluation; Have ethnical variations; Less prevalent in 
adolescence35.

Later, international evidence-based guidelines 
recommended using standardized visual scales when 
assessing hirsutism, such as the modified Ferriman 
Gallwey score (mFG) with a level ≥4-6 indicating 
hirsutism, depending on ethnicity9.

Similarly, acne, androgenic alopecia, and 
acanthosis nigricans are potential markers for clinical 
hyperandrogenism; however, they were not incorporated 
with PCOS diagnosis because either not well studied 
or poor association36 or conflicting results37. However, 

Table 3. Phenotypic classifications of PCOS as per NIH 2012 criteria (extended Rotterdam 2003 criteria)/
International evidence-based guideline 2018

Type/Group *Hyperandrogenism (HA) **Ovulatory Dysfunction 
(OD)

***Polycystic Ovary 
Morphology (PCOM)

Phenotype A Yes Yes Yes
Phenotype B Yes Yes No
Phenotype C Yes No Yes
Phenotype D No Yes Yes

*Hyperandrogenism(clinical and/or biochemical)
NIH 2012 did not clarify quantitatively clinical and biochemical hyperandrogenism
International evidence-based guideline also did not clarify quantitatively biochemical hyperandrogenism; however, clarified partly clinical hyperandrogenism 
(≥4-6 mFG score for hirsutism) but not for alopecia or acne. Cut-off should be derived from laboratory data on normal women using calculated free T, or 
calculated bioavailable T or FAI
Clinical hyperandrogenism (hirsutism): 	 Ferriman-Gallwey score ≥9
	 Modified Ferriman-Gallwey (mFG) score ≥8
	 mFG score ≥4-6 (international evidence-based guideline 2018
Biochemical hyperandrogenism: 	 High testosterone (laboratory should derive from normal women) 
	 High FAI (laboratory should derive from normal women)
**Ovulatory Dysfunction(oligomenorrhoea/amenorrhoea or oligo-ovulation/anovulation)
Oligomenorrhoea/oligo-ovulation:	� Menstrual cycle interval >35 days/<8 cycles/year 

(if menarche <3 years before then >45 days)
Amenorrhoea/anovulation:	 No menstruation for >182 days
***Polycystic Ovary Morphology 
Ovarian follicles of 2-9 mm in size with ≥ 20 follicles in one or both ovaries and/or Ovarian volume >10 ml in one or both ovary/ovaries on targeted (ovary) 
ultrasonography using 8 MHz transducer
Should not be used before 8 years completion of menarche
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international evidence-based guidelines recommended 
using Ludwig visual score for assessing the degree and 
distribution of alopecia9. Virilization (increased muscle 
bulk, body hair, clitoromegaly, and deep voice) in PCOS 
females is unusual and mostly secondary to an androgen-
producing tumor or congenital adrenal hyperplasia.

4.2 �Biochemical Hyperandrogenism (High 
Androgens)

High androgens are regarded as one of the key features 
for the diagnosis of PCOS hence must be evaluated in 
all PCOS cases. The serum total testosterone and Free 
Androgen Index (FAI) are commonly used as androgen 
markers in addition to clinical hyperandrogenism38. 
AE-PCOS society recommends free testosterone (fT) 
through equilibrium dialysis techniques as it is more 
sensitive and discourages measuring other androgens. 
However, none of the PCOS diagnostic criteria has 
provided a quantitative value (cut-off value) for high 
androgens for the diagnosis of PCOS. The limitations 
of defining high circulating androgens are due to the 
inaccuracy and variability of the laboratory methods 
of measurement39,40, wide variability in the normal 
population, normal ranges have not been well-established 
using well-characterized control populations, age 
(including adolescent and older females), and BMI have 
not been considered when establishing normal values for 
androgen levels41,42, level alters easily following hormone 
use, etc. Free T or Free Androgen Index (FAI) are more 
sensitive methods of assessing hyperandrogenaemia43. 

Recommended methods for the assessment of FAI are 
the measurement of Sex Hormone-Binding Globulin 
(SHBG) and total testosterone. Hyperandrogenemia is 
conventionally measured as high testosterone (>0.6 ng/
ml) or high free androgen index (>4½)44–46. However, high 
testosterone is rarely observed in Asians, including Indian 
women, particularly so in southern, western and eastern 
India11,12. FAI is also rarely used as a diagnostic marker 
due to assay complexity, cost and poor association13. 
Other androgens such as Dehydroepiandrosterone 
Sulphate (DHEAS), androstenedione, etc., are rarely 
studied for hyperandrogenemia markers. However, DHT 
measurement as a biomarker of hyperandrogenemia 
has been advocated to enhance diagnostic performance 
in PCOS47,48. Hirsutism is directly related to androgen 
that mainly acts on skin/hair follicles i.e., local DHT49,50. 
Moreover, the DHT estimation is comparatively simple 

(single test). Our experience suggests the significantly 
high value of serum DHT in PCOS women and can be 
recommended51,52. We observed mean DHT value of 
584.27 pg/mL in PCOS women and 257.16 pg/mL in 
control women (p<0.0001) and area under ROC curve 
0.895. Elevated serum levels of DHT (>462 pg/mL) can be 
introduced as hyperandrogenemia marker for PCOS in 
north Indian patients. However, international evidence-
based guidelines recommended using calculated free 
testosterone through LC-MS or calculated bioavailable 
testosterone through chromatography immunoassays or 
FAI as these are more sensitive9.

5. Other Biomarkers

5.1 AMH
Researchers are exploring the role of AMH in the 
causation of the disease and also evaluating its ability as a 
surrogate diagnostic marker for the syndrome. AMH is a 
glycoprotein produced by the granulosa cells of developing 
ovarian follicles53. The amount of AMH produced by the 
ovary depends on the number of developing follicles. 
The level of AMH in circulation can be the marker of the 
number of functioning follicles present which is usually 
found to increase in PCOS. Thus high serum level of 
AMH is expected in PCOS54. AMH level remains constant 
during phases of a menstrual cycle as well as following 
exogenous estrogen intake, an important advantage over 
gonadotropin and gonadal hormones55.
A high level of AMH in PCOS is reported by many and 
recommended for diagnostic use31,56,57 but no consensus 
on the cut-off value among studies56,58 that varies from 4.7 
ng/mL to >5 ng/mL56,59,60 or even 10 ng/mL in Japanese 
and Korean women61,62. We observed a median AMH 
value of about 8.5 ng/mL in PCOS (3½ times more than 
control; p<0.001) and a maximum (10.2 ng/mL) with 
phenotype D63,64. High value (>5.2 ng/mL) was observed 
in more than 85% cases and unaffected by age (within 
the reproductive age group), BMI, hirsutism (FG score) 
or androgens (Spearman’s correlation)63. Sensitivity of 
AMH was reported in various publications between 49% 
and 74% when the specificity was set at 92%; however, 
others reported higher sensitivity (over 80%) with a 
little lower specificity31,58,63–66. The AMH estimation is 
comparatively simple, sensitive, and at present the best 
available biomarker associated with PCOS. However, 
international evidence-based guidelines state that with 
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improved standardization of assays and established cut 
off levels or thresholds based on large scale validation in 
populations of different ages and ethnicities, AMH assays 
will be accurate in the detection of PCOM but presently 
should not yet be used as a single test for the diagnosis of 
PCOS or as an alternative for the detection of PCOM9.

5.2 Luteinizing Hormone (LH)
LH/FSH ratio was previously considered the diagnostic 
marker of the syndrome and was routinely measured 
in every patient22. LH, as well as LH/FSH ratio, are 
significantly elevated in women with PCOS as compared 
with control67,68. Elevated LH concentrations can be 
observed in approximately 60% of women with PCOS69 
whereas the LH/FSH ratio may be elevated in up to 95% of 
subjects68. LH levels may be influenced by BMI (higher in 
lean PCOS). The clinical utility of the LH/FSH ratio in the 
diagnosis of PCOS remains doubtful due to inter-observer 
variability and poor reproducibility in the assessment 
of the LH/FSH ratio70,71. In our study on the prediction 
model for PCOS using multivariable binary logistic 
regression final weighted score for LH was statistically 
not significant and hence not a good marker63. This is 
also viewed by all three societies and none recommended 
using LH or LH/FSH ratio as a marker.

5.3 Leptin
Leptin is a hormone secreted by the adipose tissue of the 
body and the level of leptin is proportional to the body 
fat72-74. It regulates food intake and thus food and energy 
balance of the body via the hypothalamus of the brain. 
Leptin is also known as the satiety hormone. Leptin 
resistance is common with obesity and thus cannot 
inhibit hunger.

Various studies have found the role for leptin in 
reproduction75-78. Animals with a deficiency of leptin, like in 
ob-/ob-, are found to have central hypogonadism75,76. When 
leptin is supplemented to these animals, hypogonadism 
improves77. On the other hand, when leptin is administered 
in normal prepubertal mice, it accelerates puberty. Leptin 
levels also were found to be high in PCOS women78. 
Hyperleptinemia in PCOS women has been shown in some 
studies78. However, we did not find any difference (p>0.05) 
in leptin value in total PCOS cases (20.3 ng/mL) vs control 
(12.9 ng/mL) but we observed a significant difference 
(p=0.0018) between high and normal BMI PCOS cases 
(ongoing work)80. The AUC of ROC was 0.66, indicating 

poor association with total PCOS, although there was a 
good link of PCOS with high BMI (AUC, 0.83).

5.4 Inhibins
Inhibins are heterodimeric glycoproteins. There are 
two forms of inhibin i.e., inhibin A and Inhibin B. 
The granulosa cells of the ovary synthesize inhibin A 
(luteinized/secretory phase granulosa cells) and inhibin B 
(non-luteinized/follicular phase granulosa cells)81. Alpha 
and beta A (α-βA) subunits compose inhibin A whereas 
alpha and beta B (α-βB) subunits compose inhibin B82. 
Both the types of inhibin have diverse and different 
biological functions. Inhibin B inhibits the secretion of 
FSH from the anterior pituitary. It also has local paracrine 
action in the ovary. Its biological function in regulating 
ovulation is not well understood. Inhibin B level correlates 
with ovarian activity and, therefore, may be associated 
with PCOS83. There may also be a relationship between 
high LH and high Inhibin B in some PCOS cases84. Our 
study did not find any difference in the level of inhibin B 
between PCOS and control (ongoing study)80.

5.5 Insulin 
PCOS is characterized by insulin resistance and 
compensatory hyperinsulinemia, which increases the 
risk of impaired glucose tolerance and type 2 diabetes 
mellitus (T2DM)85,86. Studies have shown that 30-40% 
of PCOS women have impaired glucose tolerance and 
10% of them develop T2DM87–90. Women with PCOS 
frequently have obesity as well as insulin insensitivity91–93 
but lean women with PCOS have the same sensitivity to 
insulin as controls94–96. Studies also have shown defects 
in insulin secretion in PCOS families97. Homeostatic 
Model Assessment of Insulin Resistance (HOMA-IR) 
is used frequently to assess insulin resistance98. Various 
studies also have shown the role of insulin in the synthesis 
of androgen in the ovaries99,100. Insulin stimulates the 
production of ovarian androgens and reduces the 
synthesis of hepatic SHBG, thus increasing the levels of 
total and bioavailable androgens101,102.

PCOS women with hyperandrogenemia have a 
higher resistance to insulin than PCOS women with 
normal androgen levels103,104. Insulin acts in synergy 
with LH to produce androgen by activating signaling 
pathways through its receptor in women with PCOS105-107. 
Insulin also stimulates the proliferation of theca cells in 
rats108,109. Our study on PCOS also detected high fasting 
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insulin levels in PCOS cases, in particular, phenotype D 
than control indicating a role in phenotype D (ongoing 
work)80. This is also supported by the AUC of ROC as 0.92 
in phenotype D (very strong association)80.

5.5 �Inflammatory Markers, Including 
Interleukins

Researchers have found that PCOS is associated with a low 
level of chronic inflammations110,111. In vitro studies have 
shown that inflammatory factors such as IL4, IFNγ, etc., 
are responsible for up-regulation of androgen production 
in the theca cells of the ovary112. This phenomenon raises 
the possibility that inflammation may be the direct cause 
of hyperandrogenism in PCOS113. The pro-inflammatory 
cytokines, such as interleukin activate the HPA axis and 
control adrenal steroidogenesis114,115. We studied PCOS 
cases with IL4 and interferon γ. We found a statistically 
significant difference between PCOS cases and control, 
but maximum in phenotype D (p<0.0001) with AUC of 
ROC as 0.88 indicating association80. However, we did not 
observe any difference in interferon γ (undetected in both 
control and PCOS cases)80.

5.6 Advanced Glycation End Products (AGEs) 
Advanced glycation end products (AGEs) are produced 
non-enzymatically by the interaction of the carbonyl group 
of carbohydrates with the amino groups of proteins either 
inside or outside the body116,117. AGEs are formed inside the 
body or preformed AGEs are taken directly through the 
ingestion of fast food, processed food, or by smoking118,119. 
AGEs exert their effect by inducing oxidative stress by 
altering enzyme activity by inducing cytotoxic pathways 
and by damaging nucleic acids120-122. AGEs also cause 
insulin insensitivity by modifying the activity of protein 
kinase C. AGEs act either through receptor-dependent 
or receptor-independent pathways. AGE receptor is 
present in the cell membrane, the extracellular matrix or 
circulation. The cell membrane receptor is called RAGE. 
The circulatory receptor is called soluble receptor for AGEs 
(sRAGE)123. The circulatory receptors bound to the AGEs 
and prevent their binding to RAGE, thus ameliorating their 
inflammatory effects on body tissues125.

AGEs have been linked with the pathogenesis of some 
diseases such as diabetes, hypertension, renal diseases, 
Alzheimer’s disease, and aging120-122. Recently, AGEs have 
been implicated in the pathogenesis of PCOS106,126. In 
various studies, AGEs have been found raised in the serum 

of PCOS patients120,127. Researchers have found increased 
serum levels of AGEs and increased expression of miRNA 
of pro-inflammatory RAGE in the ovarian tissue of PCOS 
women, which affects androgen synthesis and follicle 
maturation106,126. A positive correlation of AGEs in PCOS 
women has been found with androgens128. In addition, 
the increased immunohistochemical location of AGEs 
in polycystic ovaries suggests a possible direct action of 
AGEs on ovarian function. In general, endogenous and 
exogenous AGEs can play a role in the pathogenesis of 
PCOS129. Dietary changes and the use of gastric lipase 
inhibitors can reduce the level of AGEs, serum testosterone, 
as well as oxidative stress in PCOS women130. We also have 
found statistically highly significant (p<0.001) differences 
in mean AGE level between PCOS (12 ng/mL) and control 
(4.8 ng/mL), more so with overweight (BMI>25 kg/m2) 
and phenotype A PCOS cases. AUC of ROC analysis also 
indicates a strong association; the value varies from 0.88 
(phenotype A) to 0.9 (PCOS with high BMI cases). We 
have also observed a positive correlation with testosterone, 
DHT, BMI, bisphenol A, and leptin but not with estrogen, 
progesterone, insulin, AMH, LH, and DHEAS.

5.7 Bisphenol A (BPA)
Bisphenol A (BPA) is commonly used in the plastic 
industry as a plasticizer. Plastic containers are now 
used very commonly in our daily life and, therefore, 
exposure to bisphenol in humans is continuous131,132. 
It is a known endocrine disrupter and an estrogen-
mimicking substance. Studies have found that BPA is 
associated with obesity, changes in puberty, and ovulatory 
dysfunction132. BPA level is elevated in women with 
ovulatory dysfunction131–135 as well as with PCOS136,137. 
BPA interferes with steroidogenesis, folliculogenesis, and 
ovarian morphology133,134,138.  Rodent studies indicate that 
BPA enhances ovarian androgen production in vitro and 
induces insulin resistance in vivo138. In experiments using 
rat PCOS-like phenotype can be developed by exposing 
BPA in utero or neonatal period. Animals also develop 
later dysregulated insulin and glucose metabolism140,141. 

In vitro theca cell culture with BPA synthesizes more 
testosterone139-142. BPA, being a potent SHBG binder, 
displaces androgens, thereby increasing the levels of free 
androgens143. Androgens inhibit BPA clearance in the 
liver, leading to increased serum levels of BPA144. Our 
own study finds a high level (>245 ng/mL) in over 60% 
of PCOS cases and an AUC of ROC of 0.84. Spearman’s 
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correlation analysis also finds a significant correlation 
between BPA and androgens (testosterone, free androgen 
index, dihydrotestosterone, etc)80. Logistic regression 
analysis finds 8X more PCOS prediction compared to 
controls when BPA levels are high. 

5.8 Kisspeptin
Kisspeptin (KISS) is a neuropeptide encoded by the 
KISS1 gene and acts via its receptor, KISS1R. Kisspeptin 
is a ligand of the G-protein coupled receptor, GPR54, 
which stimulates GPR54 activity leading to an increase 
in LH level. Kisspeptin was discovered as a suppressor of 
human malignant melanoma in 1996 and a useful marker 
for distinguishing metastatic melanomas from non-
metastatic melanomas145. Kisspeptin was also isolated from 
the human placenta in 2001 as a metastasis inhibitor, thus 
called metastin146. Deactivating mutations of the KISS1R 
gene may lead to hypogonadotropic hypogonadism and 
mutations in its activation result in central precocious 
puberty. Kisspeptin/GPR54 signaling appears to be a 
key regulator of reproduction147 and defects may lead 
to hypothalamic alterations in the pulsatile secretion 
of gonadotropin-releasing hormone (GnRH) resulting 
in hypersecretion of luteinizing hormone (LH) by the 
pituitary148. Various studies reported a high level of serum 
kisspeptin in women with PCOS than in controls, in 
particular with normal BMI149,150. We are also working on 
serum kisspeptin levels in PCOS and found a significant 
difference (p=0.0051) from control women. However, 
we did not observe any correlation between androgens, 
estrogen, or LH. Our observation supports kisspeptin’s 
role in the pathophysiology of PCOS directly in ovarian 
granulosa cells151.

5.9 Melatonin
Melatonin is an indolamine hormone mainly secreted from 
the pineal gland at night or in darkness. Melatonin is also 
synthesized at the gastrointestinal tract, skin, retina, bone 
marrow, and lymphocytes152 besides reproductive organs, 
like the granulosa cells, oocytes, and cytotrophoblasts153. 
It is associated with the regulation of the sleep-wake 
cycle. Melatonin has various different pharmacological 
properties such as antioxidant, immunomodulatory, anti-
angiogenic, and oncostatic effects154. Melatonin inhibits 
hypothalamo-pituitary-gonadal axis155. Melatonin acts 
via its receptors (transmembrane G-protein-coupled) 
such as melatonin receptor 1 and melatonin receptor 2156.

The concentration of melatonin in ovarian follicles is 
higher than that of plasma suggesting its role in ovarian 
function157. Studies have shown higher melatonin levels in 
blood in PCOS patients compared to healthy women and 
could be used as a marker for the prediction of PCOS158,159. 
Elevated melatonin levels in serum of PCOS patients were 
found to be positively correlated with testosterone levels 
and LH/FSH ratio159. Melatonin treatment also promotes 
follicular maturation and ovulation through the protection 
of follicles against oxidative stress leading to follicular 
atresia159. We have also observed a significantly (p<0.0001) 
higher median value of melatonin in PCOS (121 pg/mL) 
than in control (40 pg/mL). However, we did not find 
any correlation with androgens or gonadotropins but 
inverse correlation was observed with estrogen. Various 
SNPs of melatonin receptors (rs2119882, rs10830963) are 
reported to be associated with PCOS160–162. However, we 
did not find any pathogenic/likely pathogenic variants 
of melatonin receptors in our PCOS study (WES of 51 
phenotype A PCOS cases).

6. Genetics Associations 
PCOS is frequently (20-40%) observed in first-degree 
female relatives of the general population163. Dutch twin’s 
study also observed a heritability of 0.79 thus suggesting 
the influence of genetic factors in the development of 
PCOS164. The genetic factors contributing to etiology 
of PCOS were found at 72%164. The genetic influence of 
PCOS is supported by twins and family clustering164–167. 
Hyperandrogenemia and insulin resistance, a common 
association in PCOS, more frequently exist in families 
of women with PCOS168. Similarly, 17-OH progesterone 
above basal normal level is often associated with 
PCOS, indicating an enzymatic defect in steroid 
biosynthesis169,170 even in the carrier state171. The clinical 
features of non-classic congenital adrenal hyperplasia, a 
common autosomal recessive disorder due to mutations 
in steroidogenic enzyme genes (CYP21A2, CYP11B1, 
CYP11B2, CYP11A1, CYP17A1, HSD3B2, POR, StAR, 
MC2R, MRAP, etc.), predominantly reflect androgen 
excess rather than adrenal insufficiency. Reddy et al.172 
reported CYP11A1 (tttta)(n) repeat polymorphism as a 
potential molecular marker for PCOS risk. Adolescent and 
adult women usually present with menstrual abnormality, 
hirsutism, and infertility173. Higher prevalence has been 
reported in Turkey (33%), France (23%), Portugal (18%), 
Greece (9%), India (6%), etc174–178. The phenotypic 
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spectrum for mutations in the cytochrome P450 
oxidoreductase (POR) gene has been expanded to include 
amenorrhea, infertility, and low sex steroid hormone 
levels179. Partial loss of function missense mutations in 
the Steroidogenic Acute Regulatory protein (StAR) gene 
have been associated with non-classic lipoid adrenal 
hyperplasia; mutations in the ACTH receptor (MC2R/
ARMC5) gene or the melanocortin 2 receptor accessory 
protein (MRAP) gene are associated with phenotypes 
similar to non-classic lipoid adrenal hyperplasia180. 
Other genes for which association with PCOS have been 
replicated include FBN3, HSD17B6, INSIG2, TCF7L2, 
MC4R, POMC, ACVR2A, FEM1B, FTO, ADIPOQ, etc181–184. 
Various researchers carried out genome-wide association 
studies and reported associations with LHCGR,FSHR, 
THADA, DENND1A, YAP1, RAB5B, SUOX, etc185–189. 
Day et al190. reported significant associations with ERBB4, 
FSHB, RAD50, and KRR1 genes. Although GWAS 
identified many hypothetical PCOS susceptibility genes 
their contribution is negligible167,191. In Han Chinese 
women, genome-wide association studies reported 11 
genetic loci associated with PCOS, and these loci are 
found in regions where gonadotropins, insulin signals, 
reproductive hormones, and T2DM187,192 and some of the 
variants were also detected in European women and may 
be necessary for PCOS etiology, regardless of ethnicity188. 
Although an association of PCOS with diabetes mellitus 
and obesity has been indicated, the mechanism involved 
is still unexplained193.

During the last few years, growing evidence is pouring 
on etiopathogenetic associations of AMH gene/receptors 
with PCOS rather than being merely a marker194,195. In 
vitro experiment on granulosa cells from the ovary of 
anovulatory PCOS shows 75-folds higher production of 
AMH in comparison to granulosa cells of normal ovaries. 
This indicates increased serum AMH in PCOS, reflecting 
an intrinsic dysregulation of the granulosa cells196. This is 
supported by the finding of AMH and AMHR (AMHR2 
in particular) pathogenic variants with PCOS197.

PCOS-linked genes listed in the OMIM database 
are PCOS1, FOXL2, CAPN10, SHBG,AKR1C3, FBN3, 
GATA6, SRD5A1, SRD5A2, AR, SULT2A1, H6PD, 17beta-
HSD3, INS, INSR, IGF2, IRDN, IL18, ADIPOQ, AMH, 
LHB, FSHR, CYP19A1, CYP11A1, CYP17A1, HSD11B1, 
HSD3B2, STAR, CORTRD1, etc. Other genes frequently 
associated with PCOS are C9orf3, DENND1A, ERBB3/

RAB5, TOX3, SRD5A2, SRD5A1, HMGA2, THADA, 
SOD2, ERRB4, YAP1, GATA4/NEIL2, ZBTB16, FSH-β, 
FTO, SIRT1, etc197–200.

We are working on PCOS since several years and 
our initial whole exome sequencing results identify 
pathogenic/likely pathogenic/novel variants in obesity 
and insulin-related genes like UCP1 (c.680C>T), UCP2 
(c.262C>T), IRS1 (c.2674A>G) and GHRL (c.214C>A, 
n=5) in eight PCOS patients with high BMI and high 
fasting insulin level201 and steroid biosynthesis pathway 
genes like CYP21A2 (c.1174G>A, c.955C>T, c.428T>A), 
STAR (c.158G>T), POR (c.1000G>A, c.751G>A), 
HSD17B6 (c.118G>A) and AKR1C3 (c.613T>G) in ten 
cases of phenotype A/D PCOS with normal BMI, and 
insulin level202. We have also detected pathogenic and 
likely pathogenic variants for AMH, AMHR2, INHBA, 
AR, SHBG, LHR, FSHR, FSH β, SRD5A, GATA4, THADA, 
YAP1, ERBB2, DENND1A, FEM1B, FDFT1, NEIL2, 
TCF7L2, INSR, LDLR, MC4R, ADIPOQ, UCP3, FTO, 
PCSK9, THADA, FBN3, NEIL2, FDFT1, PCSK9, CYP11, 
CYP17, etc. genes in 51 PCOS WES study (ongoing 
study). These genes can be categorized as metabolic, 
steroid biosynthetic, gonadal function-related, and other 
genes. We have also observed multiple pathogenic/likely 
pathogenic variants of more than one gene in many PCOS 
cases thus indicating polygenic etiology in most PCOS 
cases. 

Literature on gene expression study detects 
differentially expressed genes on metabolism and cell 
division/apoptosis with PCOS203–206. Characterization 
of these genes showed that retinoic acid synthesis and 
Wnt signal transduction altered in the PCOS theca cell. 
In addition, the transcription factor GATA6, which 
regulates the promoter activity of CYP17 and CYP11A, 
was increased in the PCOS compared to normal theca 
cells. A study with 119 known ovarian genes from women 
with PCOS showed differential expression compared to 
standard control ovarian samples207. Those differentially 
expressed genes were involved in various biologic 
functions, such as cell division/apoptosis, regulation of 
gene expression and metabolism. Another study showed 
that high-quality morphologically indistinguishable 
oocytes of women with and without PCOS have different 
gene expression profiles208. Those differentially expressed 
genes were associated with chromosome alignment and 
segregation during mitosis and/or meiosis. 
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7. Epigenetics Associations
Epigenetics is the study of heritable changes in gene 
expression and activity that is not caused by DNA 
sequence alterations. This includes DNA methylation 
and post-translational histone modification209. 
Epigenetic mechanisms play an important role in the 
control of gene expression by organizing the nuclear 
architecture of chromosomes, restricting or facilitating 
transcription factor access to DNA, and preserving a 
memory of past transcriptional activities210. Epigenetics 
explains how the genome and environment work in 
tandem211,212. DNA methylation is a natural tool on 
cytosine bases at CpG island promoter sequences and 
inactivates genes213. Epigenetic modification regulates 
gene transcription, X-chromosome inactivation, and 
cellular development and differentiation214. Inappropriate 
epigenetic reprogramming during gametogenesis and 
early embryogenesis has been identified as contributor 
to many common diseases with fetal origins such as 
PCOS215,216. Additionally, epigenetic alterations have been 
observed as non-random X-chromosome inactivation in 
PCOS women, evidencing that epigenetics may modulate 
the effect of the androgen receptor gene located on the 
X chromosome217,218. The role of epigenetics in PCOS is 
supported by studies on primates where intrauterine 
exposure to testosterone induces PCOS phenotype in the 
female offspring215,219,220. During development, adverse 
prenatal conditions may influence persistent epigenetic 
changes like imprinting of genes or increased, decreased 
levels of DNA methylation on CpG sites, which can 
lead to under or over-expression of genes and alteration 
of molecular pathways which may lead to a risk of 
development of PCOS during later part of life216. DNA 
methylation is the principal mechanism of epigenetics 
so far known to date. PCOS-like features also can be 
produced in small mammals by exposing their mothers 
to pesticides, androgens, bisphenol A, etc., during their 
pregnancy221,222. These indicate that PCOS might have an 
epigenetic basis. In humans, aberrant gene methylation 
(CEBPB, IL-6, IR, etc) has been reported in patients with 
PCOS223,224. Hypermethylation in the PPARG1 promoter 
and hypomethylated in the NCOR1 and HDAC3 
promoter were reported in hyperandrogenic granulosa 
cells of PCOS225. PCOS women display dysfunction of 
subcutaneous adipocytes in addition to altered adipose 
tissue expression of PPARG, LEPR, TWIST1, CCL2, etc 
genes226.

Epigenetic changes in fetal life are also implicated 
in the developmental origins of PCOS.227 Early prenatal 
testosterone-treated adult female rhesus monkeys 
exhibit LH hypersecretion, ovarian hyperandrogenism, 
oligoanovulation, and PCO; they also demonstrate insulin 
resistance166,222. Prenatally testosterone-treated sheep also 
demonstrate LH hypersecretion, persistent follicles, and 
insulin resistance228. In mouse, PCOS phenotypes is seen 
in F1 generation female offspring following androgen 
exposure as well as in F2 generation offspring without 
androgen exposure during pregnancy, suggesting that 
intrauterine epigenetic programming is independent of 
androgens and can be genetically advanced229.

In humans, studies also have shown a link between 
weight gain during pregnancy and the delivery of a baby 
who later developed PCOS230. A potential mechanism 
that can produce this effect is the epigenetic process231,232. 
Epigenetic alteration of various genes linked with PCOS 
are LHCGR, YAP1, FOXO3 (hypomethylation), CYP19A, 
PPARGC1A, PPARG (hypermethylation), ncRNAs (miR-
93/GLUT4, miR-320/ERK1/2, miR-21/LATS1; lncRNA 
H19, lncRNA SRA, lncRNA GAS5) &miRNA (miRNA21, 
miRNA93, miRNA-320)233.

Our experience on the epigenetics in PCOS 
also confirms its role, mainly through alterations in 
methylation, global DNA (methylation DNA ELISA), 
global RNA (methylation RNA ELISA) as well as gene-
wise (850K methylation array) epigenetic investigations. 
We observed hypermethylation in phenotype A (p=0.004) 
but absent in phenotype D which is either hypomethylated 
or normal in peripheral blood of PCOS women80. We 
have also observed differential (p=0.0015) global RNA 
hypomethylation in blood in comparison to control. We 
observed differential methylation (hypermethylation) 
in the CCL4L1 (cytokine/chemokine) gene in 
phenotype D PCOS in comparison to control besides 
differentially methylated (hypomethylated) promoter of 
ENSG00000271778/lncRNA gene in phenotype A PCOS 
in comparison to control. We have observed differential 
methylation of various pathways in phenotype A PCOS 
cases with high BPA and/or AGEs.  Pathways involved are 
diabetes mellitus (30%), oocyte meiosis and maturation 
(26%), glucagon signaling (11%), insulin secretion or 
resistance (11%), steroidogenesis (7%), AMPK signaling 
(7%), AGE-RAGE signaling (4%), GnRH secretion (4%), 
etc. Differentially methylated genes commonly involved 
are INSR, IRS1, GHRL, ADIPOQ, FTO, CYP, GnRH, 
NF kappa, TNF, AGE/RAGE, AMPK, aldosterone, E2, 
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prolactin, progesterone, apoptosis, etc. These findings are 
in accordance with WES findings of major pathogenic 
variants. Most of the publications on genome-wide 
methylation profiling in PCOS are from granulosa cells/
other ovarian tissue and very few on peripheral blood234–239.  
Promoter methylation of YAP1 gene (hypomethylated) in 
ovary granulosa cells of PCOS patients promotes the YAP1 
expression, which plays a key role in the pathogenesis of 
PCOS240.

8. �Co-morbidity/Complication 
with PCOS

8.1 Reproductive
The commonest reproductive complication of PCOS 
is anovulatory infertility241. PCOS women are prone to 
have early abortions due to low progesterone and high 
androgens. Pregnancy complications like gestational 
diabetes, preeclampsia, preterm birth, etc., are also more 
frequent with PCOS. Maternal complications are also 
common, particularly hyperandrogenic PCOS242 women 
with PCOS is prone to have ovarian hyperstimulation 
syndrome (life threatening condition) during ovulation 
induction with gonadotropin, in particular those with 
high AMH level243. PCOS women also have increased 
risk for endometrial cancer, and could be due to obesity, 
diabetes, anovulation and ovulation induction244.

8.2 Metabolic
PCOS is often associated with insulin resistance and 
hyperinsulinemia, more often with phenotype A245,246. 

PCOS is also associated with impaired glucose tolerance 
and type 2 diabetes as well as vascular endothelial 
dysfunction and metabolic cardiovascular syndrome247–249 

However, publication on long term follow up reported no 
increased risk for stroke or ischaemic heart disease in 
PCOS women, even at post-menopause250.

9. Management 
There is no specific treatment for PCOS and presently all 
measures are directed to overcome various symptoms. 
Lifestyle adjustments should be the first-line management 
to improve reproductive, metabolic, cardiovascular, 
and psychosocial symptoms251. These focuses on 
diet modification, weight management and physical 

exercise besides meditation. A session at counselling on 
importance of lifestyle adjustment on combating PCOS 
should be explained for better motivation. Severe cases 
may require silencing of ovarian function for a brief 
period with oral contraceptive pill (combined with 
lowest estrogen) with/without addition of metformin 
(in particular with obesity/other metabolic problems; 
also helps in weight reduction)252. For the management 
of anovulatory infertility with no other factors, lifestyle 
intervention is recommended but if it fails, ovulation 
induction using clomiphene citrate or letrozole with/
without metformin may be recommended. If it fails then 
gonadotrophins and thereafter laparoscopic surgery 
(wedge resection of ovary) may be recommended as 
next line of management. However, many women with 
PCOS fail to conceive despite all measures. The role of 
antiandrogens in the treatment of hirsutism or Bariatric 
surgery to improve fertility in PCOS is controversial253,254.

Recent, genomic data analysis indicates that many 
of PCOS cases (about 20% in our study) can be linked 
to steroid biosynthesis pathway genes (pathogenic/likely 
pathogenic variants) and this group i.e., non-classical 
congenital adrenal hyperplasia can be treated specifically 
with corticosteroid. In coming years targeted personalized 
therapy depending on underlying genetic/epigenetic 
etiology will be in practice to overcome this syndrome.

10. Summary
PCOS is the most common reproductive endocrine 
disorder in women of reproductive age. PCOS is 
characterized by hyperandrogenism (clinical and/or 
biochemical; first criterion), ovulatory dysfunction (oligo 
and/or anovulation; second criterion), and polycystic 
ovary morphology (polycystic and/or enlarged ovary; 
third criterion). At present the only followed PCOS 
diagnostic criteria is Rotterdam 2003 criteria with 
phenotypic sub-classifications i.e., NIH criteria 2012. 
This approach classifies PCOS cases into four phenotypic 
groups viz., phenotype A (all three criteria), phenotype 
B (first two criteria), phenotype C (first and last criteria), 
and phenotype D (last two criteria). The commonest 
phenotype of PCOS is phenotype A. Phenotype D 
PCOS is common at a younger age with normal BMI 
and BPA, and associated mostly with higher AMH, 
fasting insulin and IL4. The PCOS is associated with 
genetic factors, often with multiple genes and epigenetic 
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factors influenced via environmental factors (Figure 1). 
Environmental pollutants play some role as Endocrine-
Disrupting Chemicals (EDC) and disrupt ovarian as 
well as metabolic function thus causing PCOS-like 
abnormalities. BPA, a widely used estrogenic plasticizer, 
is one such EDC that is associated with genesis of 
PCOS. Similarly, AGEs are also associated with PCOS. 
Among genetic causes, various genes are associated viz., 
ghrelin, insulin, insulin receptor, steroid biosynthesis 

enzymes, AMH, AMHR2, FSH, FSHR, GATA4, LHCGR, 
THADA, DENND1A, YAP1, RAB5B, SUOX, NEIL2, 
etc.  Epigenetic changes in fetal life are also implicated 
in the developmental origins of PCOS as evident with 
PCOS-like phenotypes induced experimentally through 
prenatal exposure with various agents like androgens, 
BPA, AGEs, etc in rhesus monkeys, sheep, rats, mice, 
etc. Hypomethylation (ENSG00000271778/lncRNA) 
or hypermethylation (CCL4L1) of various genes and 

Figure 1. Associations of genetic (51 cases), epigenetic (29 cases), and environmental (80-100 cases) factors with 
PCOS from our study.
Genetic associations

M (metabolic; in 40%) genes: INSR, IRS1, GHRL, LDLR, MC4R, ADIPOQ, UCP1, UCP2, UCP3, FTO, PCSK9, THADA, FBN3, NEIL2, FDFT1, PCSK9, etc

SB (steroid biosynthesis; in 20%) genes: CYP11, CYP17, CYP21, HSD17, STAR, POR, AKR1C3, etc

OF (ovarian function; in 15%) and RH (reproductive hormone; in 15%) genes: AMH, AMHR2, INHBA, AR, SHBG, LHR, FSHR, FSH β, SRD5A, etc

OT (other; in 10%) genes: GATA4, THADA, YAP1, ERBB2, DENND1A, FEM1B, FDFT1, NEIL2, TCF7L2, etc

Epigenetics associations

MP (metabolic; in 40%) pathways: diabetes mellitus, glucagon signaling, insulin synthesis/secretion, adipocyte function, etc

HF (hormone functions; in 20%: synthesis/secretion/action) pathways: cortisol, aldosterone, E2, prolactin, progesterone, GnRH, etc

OF (ovarian function; in 15%) pathways: oocyte maturation, mitosis, etc

Inflammatory (in 10%) pathways: NF kappa, TNF, etc

OT (other; in 15%) pathways: aging, AGE/RAGE, apoptosis, AMPK, etc

Environmental associations

BPA (bisphenol A): high in 30% of cases

AGEs (advanced glycation end product): high in 30% of cases

BMI (body mass index): high in 45% of cases
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pathways (diabetes mellitus, insulin secretion/resistance, 
oocyte development, glucagon signaling, steroidogenesis, 
AMPK signaling, AGE-RAGE signaling, etc.) are 
associated with PCOS.

11. Conclusions 
PCOS is characterized by hyperandrogenism, ovulatory 
dysfunction, and polycystic ovary morphology. 
PCOS consensus diagnostic criteria recommended by 
international committee on PCOS guideline is Rotterdam 
2003 criteria with phenotypic sub-classifications (A to 
D) i.e., NIH 2012 criteria. Among biomarkers calculated 
free testosterone, or calculated bioavailable testosterone 
or FAI is recommended and AMH is promising. 
However, yet no consensus derived on cut-off levels and 
need more research data before any recommendation. 

The commonest phenotype of PCOS is phenotype A. 
Phenotype D (without hyperandrogenism) seems to be 
different as more prevalent at a younger age with normal 
BMI, and more frequently associated with high AMH 
and fasting insulin. The underlying etiology of PCOS 
seems to be extremely heterogeneous and associated with 
genetic factors, often involvement of multiple genes and 
epigenetic factors influenced by environmental factors, 
in particular bisphenol A and AGEs. There is no specific 
treatment for PCOS at present, and mostly directed to 
treat symptoms. Soon, we will be in a position to treat 
PCOS specifically according to underlying etiopathology 
viz., corticosteroid for non-classical CAH presenting as 
PCOS, epigenetic modification, etc. In coming years 
targeted personalized therapy depending on underlying 
genetic/epigenetic etiology will be in practice to overcome 
this syndrome.
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