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Abstract 
Thyroid hormone metabolite 3, 5-diiodothyronine (T2) has been shown to possess physiological actions in vertebrates 
including fishes. It is, however, not certain if T2 has a role in cation transport in fish hepatocytes, particularly in a stressed 
condition. We, therefore, tested the in vitro action of T2 on the activities of ion transporters such as Na+/K+ ATPase, H+/
K+ ATPase, Na+/NH4

+ ATPase, vacuolar H+-ATPase, Plasma Membrane Ca2+ ATPase (PMCA), mitochondrial Ca2+ and 
mitochondrial H+-ATPase as these ATPases are known for their roles in maintaining systemic and cellular cation gradients 
including proton and potassium gradients. Hepatocyte explants of air-breathing fish (Anabas testudineus, Bloch), either 
in non-stressed or hypoxic condition, were incubated with varied doses of T2 (10-9, 10-8 and 10-7 M) for 15 min and the 
specific activities of these cation-dependent ATPases were analyzed. We found that T2 exposure evoked higher sensitivity 
to vacuolar and mitochondrial H+-ATPases and H+/K+ ATPase and not to PMCA or mitochondrial Ca2+ ATPase. The data also 
indicated that T2 has a similar sensitivity to vacuolar and mitochondrial H+-ATPases and H+/K+ ATPase in the hepatocytes 
of both non-stressed and hypoxia-stressed fish. The data thus provide evidence for a direct action of T2 on the regulation of 
proton and potassium gradients in the hepatocytes of both non-stressed and hypoxicair-breathing fish. 
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1. Introduction
Thyroid Hormones (THs) are critical in the regulation 
and coordination of many vital physiological processes in 
all vertebrates including fishes. They engage in genomic 
mechanisms that are mediated by the involvement of 
nuclear TH receptors1,2 or non-genomic mechanisms that 
are initiated by the binding of hormone molecules to the 
receptors present in the plasma membrane, mitochondria 
or cytoplasm3. In addition, sharing of both non-genomic 
and genomic actions of THs have also been documented4. 
Thyroxine (T4) and triiodothyronine (T3) are the leading 
hormones of Hypothalamic-Pituitary-Thyroid (HPT) 
axis and are involved in many physiological actions in 
fishes including osmotic and ionic regulations5-7. THs 
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perform both fundamental and modulator roles in 
the regulation of water and mineral balance in fishes 
particularly during stress conditions8. During stress 
response, many hormonal signals interact with an array 
of ion transporters that regulate ionic homeostasis in 
fishes9. As an important ion-transporter regulator and a 
stress modifier, THs have the ability to modify the stress-
induced physiological responses in fishes. Furthermore, 
non-genomic actions of TH particularly on plasma 
membrane ion transporters and cytoskeleton have 
been found associated with homeostaticmechanisms10. 
However, a role for 3, 5– diiodothyronine (3, 5-T2 or T2) 
that mimics several biological effects of T3

11,12 has not yet 
been delineated in fishes.
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Thyroid hormones are key regulators of cellular 
metabolism, and have influence over metabolic processes 
in almost all tissues. As the important metabolic center, 
hepatocytes are one of the major target cells of TH, a 
prime regulator of energy metabolism13,14. Moreover, 
hepatocytes play a crucial role in TH metabolism. THs 
are known for their metabolic and ion-regulatory actions 
where they utilize their differential and integrative 
mechanisms5, involving regulation of ion transporter 
protein abundance and modulation of activity patterns15-18. 
Hepatic function has been found associated with TH 
function and, naturally, any alteration in TH status 
would affect hepatic activity19. Furthermore, THs would 
modulate ion cycling by altering membrane permeability, 
expression and characteristics of ion pumps20-22. Liver is 
an important site for the stress acclimation, demanding 
high energy requirement for homeostasis particularly 
during stress23,24. Induction of stress could influence the 
liver physiology of fishes and could alter the carbohydrate 
and lipid metabolism25 and there exists an intricate 
relationship between THs and liver function19,26,27.

Bioenergetic mechanisms appear to be a main 
machinery target of T2

12,28,29 particularly in hepatocytes30-33. 
However, the action of T2 on ion transporters that 
regulate cationic gradients necessary for normal hepatic 
functioning has not yet been studied especially in fishes. 
In the present study we, thus, examined the in vitro action 
of T2 on ion-dependent ATPases such as Na+, K+-ATPase 
(NKA), H+, K+-ATPase (HKA), Na+, NH4+ ATPase 
(NNA), vacuolar H+-ATPase (vHA), plasma membrane 
Ca2+ ATPase (PMCA), mitochondrial Ca2+ ATPase and 
mitochondrial H+-ATPase in the hepatic explants of the 
air-breathing fish Anabas testudineus which were kept 
either in non-stressed or hypoxia-stressed state to address 
how T2 modulates cationic gradients in hepatocytes 
during hypoxia-stress condition.

2. Materials and Methods

2.1 Fish Holding Conditions
Climbing perch (Anabas testudineus Bloch), an obligate 
air-breathing tropical freshwater fish belonging to order 
Perciformes and family Anabantidae, was selected as 
the test species. This fish that inhabit the backwaters of 
Kerala in Southern India, have well defined physiological 
and biochemical mechanisms to live in demanding 

environmental conditions34,35. As an excellent model to 
study the advanced physiological mechanisms6,34,36,37, wild 
Anabas (approx. 40 ± 5 g body weight) were collected 
locally and held for three weeks in the laboratory 
conditions. They were kept under natural photoperiod 
(12 L/D cycle) at water temperature ranging from 28°C to 
29°C, with a mean water pH of 6.2. Before the start of the 
experiments, fish were transferred to 50 L glass tanks and 
kept for another two weeks of acclimation. They were fed 
with dry commercial fish feed at 1.5% of body mass, and 
feeding was discontinued for 24 h prior to experiment, 
and care was taken to minimize the effect of stress such as 
handling to ensure standardized experimental conditions. 
The regulations of Institutional Animal Ethics Committee 
of the University were followed and we found no mortality 
during the course of the experiments.

2.2 Animal Care and Experiments
Two independent experiments were carried out. The first 
experiment tested the dose-responsive in vitro action 
of T2 on the specific activity of ion-dependent ATPases 
such as Na+, K+-ATPase (NKA), H+, K+-ATPase (HKA), 
Na+, NH4+ ATPase (NNA), vacuolar H+-ATPase (vHA), 
plasma membrane Ca2+ ATPase (PMCA), mitochondrial 
Ca2+ ATPase (mit.CA) and mitochondrial H+-ATPase 
(mit.HA) in the hepatocyte explants of fish. Hepatocyte 
explants were prepared from laboratory-acclimated fish 
(n=24). A set of fish hepatocyte explants (n=6) were kept 
as control and the remaining three sets of explants were 
exposed to various doses of T2 such as 10-9, 10-8 and 10-7 
M, respectively, for 15 min under in vitro conditions. T2 
(Sigma-Aldrich, USA) was dissolved in 0.04 M NaOH 
and subsequently diluted with 0.65% saline solution. This 
stock solution was kept at 4oC38.

In the second experiment, the in vitro action of T2 on 
the activity of hepatocyte ion-dependent ATPases was 
analyzed either in non-stressed or immersion-stressed 
fish. Twenty four laboratory-acclimated fish were held 
as four groups (4×6). Fish in the first and second groups 
were kept as non-stressed fish. Fish in the third and 
fourth groups were subjected to immersion-stress for 
30 min before in vitro treatment. Induction of stress was 
practiced in these fish by placing them in water under 
an iron-mesh that prevented them from gulping air as 
reported earlier9,39. To ensure standardized experimental 
conditions, feeding was discontinued for 24 hours prior 
to the experiment, and care was taken to minimize the 
effect of handling stress on experimental fish.
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2.3 Preparation of Hepatocyte Explants and 
in Vitro Conditions 
After the experimental treatment, fish were anesthetized 
using 0.2% 2-phenoxyethanol (SRL, Mumbai, India) 
solution for a brief period of two minutes and blood was 
immediately drawn from the caudal vein. The fish were 
sacrificed immediately by spinal trans-section and the 
lower lobes of liver tissue were extracted and placed in 
Cortland saline (CS) containing 119 mM NaCl, 5 mM 
NaHCO3, 5.4 mM KCl, 0.35 mM Na2HPO4, 0.44 mM 
KH2PO4, 0.81 mM MgSO4, 1.25 mM CaCl2 and 5 mM 
D-glucose of pH 7.440,41. The hepatic explants were cut 
into small pieces (5 mm2) that provided enough surface 
area for the absorption. The explants were washed thrice 
in Cortland saline to remove the tissue debris before the 
treatment. Then, these explants were held for 10 min in 
Cortland saline for equilibration on an orbital shaker 
platform at room temperature (28ºC) as described 
earlier42. In the first dose-responsive experiment, graded 
concentrations of T2 (10-9, 10-8, or 10-7 M) prepared in 
Cortland saline were added to the medium in vitro that 
contained the hepatic tissue explants and incubated for 15 
min. In the second stress experiment, a selected dose of T2 

(10-7 M) was added in vitro to the explants obtained from 
both non-stressed and hypoxia-stressed fish. Similarly, 
control hepatocyte explants were maintained concurrently 
in incubation medium. After in vitro exposure of T2 or 
vehicle, incubation was terminated by placing the hepatic 
explants at 40C and the explants were washed with ice-
cold Cortland saline three times. These explants were 
then stored in 0.25M Sucrose-EDTA-Imidazole (SEI) 
buffer (pH 7.1) and kept at −80°C for further analysis.

2.4 Sample Preparation and Quantification 
of Ion-specific ATPases
Frozen hepatocyte explants were thawed on ice and a 
homogenate was prepared in SEI buffer (0.05 M; pH 7.1) 
using a glass homogenizer (Remi, Mumbai) with Teflon 
pestle giving three strokes, as described previously7. A 
portion of the homogenate was centrifuged at 700×g 
for 10 minutes at 4°C (Eppendorf 5430R, Germany) 
to obtain membrane fraction (H0) for quantifying the 
activity of NKA, HKA and NNA. The remaining portion 
of the supernatant was centrifuged at 10,000 x g for 
10 min at 4°C to separate mitochondrial fraction and 
post-mitochondrial (PMS) fraction. Vanadate-sensitive 

PMCA and baffilomycin-sensitivev HA-specific activities 
were quantified in PMS as described earlier7,43. The 
mitochondrial pellets thus obtained were centrifuged 
and repeatedly washed and suspended in fresh ice-
cold 0.25 M SEI buffer (pH 7.1)43. Vanadate-sensitive 
mitochondrial Ca2+ ATPase- and baffilomycin-sensitive 
mitochondrial H+ATPase-specific activities in the 
mitochondrial suspension were quantified. Modified 
Biuret assay was used to determine protein concentration 
in sample preparations utilizing bovine serum albumin as 
the standard44.

2.4.1 NKA-Specific Activity
The ouabain-sensitive NKA-specific activity was 
quantified adopting the method of Peter et al. (2000) 
modified for microplateassay34. To optimize substrate 
accessibility, saponin (0.2 mg protein−1) was added and 
samples in duplicates containing 1.0 μg protein were added 
to a 96-well microplate containing 100 mM NaCl, 30 mM 
imidazole (pH 7.4), 0.1 mM EDTA, and 5 mM MgCl2. 
KCl 0.13 mM and ouabain 0.14 mM were used as the 
promoter and inhibitor, respectively, for NKA. The assay 
mixture was vortexed and then incubated at 37°C for 15 
min. The reaction was initiated by the addition of 0.3 mM 
ATP and terminated with the addition of 8.6% TCA. The 
liberated inorganic phosphate (Pi) was measured against 
phosphate standard at 700 nm in Synergy HT Biotek 
Microplate Reader, USA. The change in absorbance was 
calculated and regression analysis was used to derive the 
rate of activity of NKA and expressed in micromoles of Pi 
liberated per hour per milligram of protein.

2.4.2 HKA-Specific Activity
SCH28080-sensitive HKA-specific activity was quantified 
based on the NKA microplateassay34. Saponin-treated 
samples in duplicates (1.0 μg protein) were added to a 
96-well microplate containing the above reaction mixture, 
and the reaction was initiated by the addition of 0.3 mM 
ATP and incubated at 37°C for 15 minutes. About 0.1 
mM SCH28080 (2-methyl-8-(phenylmethoxy)-imidazo 
[1,2-a] pyridine-3-acetonitrile) was used as inhibitor 
and 0.13 mM KCl was used as promoter. The inorganic 
phosphate content was measured in Synergy HT Biotek 
Microplate Reader after termination of reaction by 
adding 8.6% TCA and the change in absorbance at 700 
nm between promoter and inhibitor assays was calculated 
using regression analysis. The rate of HKA activity was 
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expressed as micromoles of Pi liberated per hour per 
milligram of protein.

2.4.3 NNA-Specific Activity
An ouabain-sensitive NNA-specific activity was quantified 
based on the NKA microplate assay34 but here 0.02 mM 
NH4Cl, instead of 0.13 mM KCl, was used as promoter and 
0.14 mM ouabain was used as inhibitor. Saponin (0.2 mg 
protein−1) treated samples in duplicates, containing 1.0 
μg protein, were added to a 96-well microplate containing 
100 mM, NaCl, 30 mM imidazole, 0.1 mM EDTA, and 
5 mM MgCl2. After vortexing, the assay mixture was 
incubated for 15 minutes at 37°C and the reaction was 
initiated by the addition of 0.3 mM ATP and terminated 
with addition of 8.6% TCA. The inorganic phosphate 
liberated was measured against phosphate standard at 700 
nm in Synergy HT Biotek Microplate Reader. The change 
in absorbance between promoter and inhibitor assays was 
calculated. The rate of activity was derived by regression 
analysis and expressed in micromoles of Pi liberated per 
hour per milligram of protein.

2.4.4 PMCA and Mitochondrial Ca2+ATPase-
Specific Activity
The specific activity of PMCA and mitochondrial 
Ca2+ATPase was measured in post-mitochondrial and 
mitochondrial fractions, respectively, as described for 
NKA-specific activity. Here, 10 mM CaCl2 was used as 
the promoter. Sodium deoxycholate (1% DOC; Sigma-
Aldrich)-treated samples in duplicates were added to a 
96-well microplate containing 60 mM imidazole, 0.2 mM 
EGTA and 75 mMKCl. The reaction was initiated by the 
addition of 0.3 mM ATP and the inorganic phosphate 
liberated was measured against phosphate standard at 700 
nm in Synergy HT Biotek Microplate Reader. The rate of 
activity was expressed in micromoles of Pi liberated per 
hour per milligram of protein43.

2.4.5 H+-Dependent vsHA- and Mitochondrial 
HA-Specific Activities
The baffilomycin-sensitive H+-ATPase activity was 
measured as described for NKA microplate assay using 
an inhibitor 32nM or 64 nM baffilomycin A7. Samples 
in duplicates containing 1.0 μg protein were added to a 
96-well microplate containing 100 mM NaCl, 30 mM 
imidazole (pH 7.4), 0.1 mM EDTA, 5 mM MgCl2 and 0.14 

mM ouabain. The assay mixture was incubated with 0.3 
mM ATP for 15 min at 370C. The inorganic phosphate 
content released was determined as above and expressed 
in micromoles of Pi liberated per hour per milligram of 
protein.

2.5 Statistical Analysis
Data, after checking for normal distribution and variance 
homogeneity, were subjected to one-way Analysis of 
Variance (ANOVA) followed by Student-Newman-Keuls 
test (SNK comparison test). Significance between the 
groups was analyzed with the help of GraphPad InStat-3; 
GraphPad Software, Inc., San Diego, CA, USA, and 
statistical differences between the means were accepted as 
significant if p<0.05.

3. Results

3.1 Dose-Responsive In Vitro Action of T2 
on Hepatocyte Explants of Non-Stressed 
Fish
In vitro exposure of varied doses (10-9,10-8, 10-7M) of T2 

for 15 min showed no response to the activities of NKA, 
HKA and NNA in hepatocyte explants collected from 
non-stressed fish (Figure 1A). Likewise, PMCA activity 
in hepatocyte explants remained unaffected after varied 
doses of T2 exposure (Figure 2A). In contrast, vacuolar 
H+-ATPase activity in hepatocyte explants showed 
substantial increase after T2 treatment (Figure 2A). 
Likewise, mitochondrial Ca2+-ATPase activity showed 
significant (p<0.001) decline after the treatment of low 
and medium doses of T2, whereas the high dose did not 
affect its activity (Figure 2B). Similarly, high dose of T2 
treatment produced a significant increase (p<0.05) in 
mitochondrial H+-ATPase activity in hepatocyte explants 
of non-stressed fish (Figure 2B).

3.2 In Vitro Action of T2 in Hepatocyte 
Explants of Immersion-Stressed Fish
The activity of NKA increased significantly (p<0.05) 
in hepatocyte explants of hypoxia-stressed fish and its 
activity significantly increased (p<0.05) further by T2 
addition (Figure 1B). In contrast, the NNA activity in 
hepatocytes remained unaffected after T2 addition in 
both non-stressed and hypoxia-stressed fish (Figure 1C). 
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Figure 1.  Dose-responsive in vitro action of T2 (10-9, 10-8 and 10-7 M) treatment for 15 min on the activities of Na+/K+-
ATPase (NKA), H+/K+-ATPase (HKA) and Na+/NH4

+-ATPase(NNA) in the hepatocyte explants of Anabas testudineus. (A). 
The activity pattern of Na+/K+-ATPase, H+/K+-ATPase and Na+/NH4

+-ATPase are presented in B, C & D, respectively. These 
activities were obtained from non-stressed and immersion-stressed fish after T2 treatment (10-7 M). Each bar is mean ± SE 
for 6 fish. The significance levels of figures 1B-D are represented as “b” when compared between non-stressed control and 
immersion-stressed fish (IMR) and “c” represents significance between immersed control fish (IMR) and T2-treated stressed 
(T2+IMR) fish.

The activity of HKA activity that remained unresponsive 
to hypoxia but increased significantly (p<0.01) in 
hepatocytes of stressed fish following T2 challenge (Figure 
1D). In hepatocytes obtained from both non-stressed and 
stressed fish treatment of 10-7M T2 did not produce any 
alteration in PMCA activity (Figure 2C). Mitochondrial 
Ca2+-ATPase activity showed a significant increase 
(p<0.01) in hypoxia-stressed hepatocytes, whereas T2 

treatment failed to produce any modification in its 
activity in both non-stressed and stressed fish (Figure 
2D). A significant rise in (p<0.01) in vH+-ATPase activity 
occurred after T2 exposure in hepatocytes of both non-
stressed and hypoxia-stressed fish (Figure 2E). Similarly, 

the activity of mitochondrial H+-ATPase increased 
significantly (p<0.01) after T2 treatment in the hepatocytes 
of non-stressed and hypoxia-stressed fish (Figure 2F).

4. Discussion
Thyroid Hormones (THs) play vital role in vertebrate 
physiology as key regulators of growth, development, 
metamorphosis, metabolism, osmoregulation and 
reproduction34,45-47. It is known that the principal THs, 
T4 and T3, as the active hormones are responsible for 
these activities. However, evidences have showed that T2 

also has important biological actions12,32,48 either through 
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Figure 2.  Dose-responsive invitro action of T2 (10-9, 10-8 and 10-7 M) treatment for 15 min on the activities of PMCA, 
VH+-ATPase, mitochondrial Ca2+-ATPase and mitochondrial H+-ATPase in the hepatocyte explants of Anabas testudineus. 
(A). The activity patterns of PMCA, VH+-ATPase, mitochondrial Ca2+-ATPase and H+-ATPase are presented in B, C, D, E 
& F, respectively. These activities were obtained from non-stressed and immersion-stressed fish after T2 treatment (10-7 M). 
Each bar is mean ± SE for 6 fish. In figure 2A, the significance levels are represented as “*” (p<0.05), “**” (p<0.01) and “***” 
(p<0.001) when compared with control fish. significance levels in figures 2B-F are represented as “a” when compared between 
control and T2-treated fish, “b” when compared between non-stressed control and immersion-stressed fish (IMR) and “c” 
represents significance between immersed control fish (IMR) and T2-treated stressed (T2+IMR) fish. 
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non-genomic3,12 or genomic actions49,50. These effects of 
T2 are not limited to mammals but reported in fishes as 
well51. For example, mitochondria and bioenergetics 
mechanisms have been shown to be the main targets of 
the TH metabolite T2

52,53.
Physiological response to a stressor involves the 

induction of neuro-endocrine cascade54. Fishes have 
evolved mechanisms to respond to various stress factors 
and rely on complex network of neuro-endocrine and 
physiologic responses to maintain their homeostasis8. The 
role of cortisol and adrenaline as major stress hormones 
during stress response have been well documented in 
fishes55. Similarly, THs have been shown to act as a stress 
modifiers due to their unique modulatory role in fish 
physiological processes and their ability to modify stress-
induced response5,6,8. 

Fishes have evolved transepithelial transport 
mechanisms to achieve ionic and osmotic homeostasis56. 
Various transporter proteins that are located in the trans-
epithelium move specific solutes across the membrane 
with the aid of transmembrane ATPases which utilize 
energy from the hydrolysis of ATP57. NKA, a key 
transporter that acts as the driving force for Na+-coupled 
ion transport is abundant in active ion-transporting 
epithelia of fishes58-60. Similarly, Ca2+, that controls many 
critical cellular responses, is also essential for the cell 
functioning. Plasma membrane Ca2+ ATPase (PMCA) has 
a high Ca2+ affinity and acts as the fine-tuner of cytosolic 
Ca2+61. Likewise, PMCA maintains a gradient across the 
plasma membrane by regulating cellular Ca2+ extrusion62.

NKA and PMCA are the membrane ATPases 
critical for the normal physiology and functioning of 
hepatocytes63,64. A unique Na+-dependent NH4

+-ATPase, 
contributes to basolateral ammonia transport65 and it 
takes place via NKA66. Since NH4

+  and K+  have similar 
hydrated radii, NH4

+  binds to K+ binding sites on the 
NKA9,67-69. HKA, another P-type transporter, is responsible 
for ATP-dependent translocation of H+  for K+  across 
plasma membranes70. Gastric type HKA in the stomach 
and kidneys of mammals mediates acid secretion71 and 
the presence of nongastric type HKA has been reported 
in the gills of Atlantic stingray, an elasmbranch72 and in 
the osmoregulatory epithelia of our test fish9. 

Vacuolar H+-ATPase or proton pump, an oligomeric 
protein responsible for electrogenic H+ secretion, 
is another important ATPase involved in fish ion 
regulation73-75. Primarily, this transporter is responsible 
for acidification  of intracellular compartments and 

proton transport  across the  plasma membrane76. 
Likewise, proton- or H+-ATPases in mitochondria are 
responsible for the transport of protons by utilizing the 
energy through the hydrolysis of ATP77. Mitochondria, as 
an important Ca2+ reservoir, rely on Ca2+ ATPase of the 
mitochondrial membrane to transport Ca2+ from cytosol 
into mitochondrial matrix77. Further, mitochondrial Ca2+ 

regulation has a direct link with bioenergetics and cellular 
signalling78. 

As a multifunctional organ, liver plays an important 
role in fish physiology79. Liver appears to one of the most 
important target organs of THs due to its role in energy 
metabolism80. Further, hepatic tissue is also a major target 
for T2 action like active THs, particularly due to its action 
on energy metabolism52,53. The roles played by T4 and T3 in 
physiological processes are well documented. In contrast, 
the role of T2 in ion-dependent ATPases that drives cation 
gradients across membrane remains unknown. We, thus, 
analyzed the in vitro action of T2 on the ion-transport 
dynamics that would affect the hepatocyte function. We 
found that T2 exposure could affect the activity pattern of 
various ATPases in this important metabolically active 
organ. The pattern of dose-dependent in vitro action of 
T2 on ATPase activity in non-stressed and immersion-
stressed hepatocyte explants revealed a direct action of T2 

on hepatocyte cation transport. 
It is known that THs affect several fundamental ion-

transporter systems in many osmoregulatory tissues 
as evident in in vitro and in vivo studies7,81,82. In vitro 
studies on primary culture of rat hepatocytes and rat 
liver cell lines proved that NKA is a major target of THs 
and are able to produce both short-term and long-term 
modulation on this ion-transporter83-85. 3,5-T2 exposure 
increased the hypothyroid liver mitochondrial F0F1-ATP 
synthase activity and expression, and this activation could 
be observed in both directions i.e., towards synthesis as 
well as hydrolysis of ATP86. In teleost fish liver, T2 regulates 
the transcription of classical TH-regulated genes49,51,87. All 
these studies indicate that liver is one of the main targets 
of T2 and this TH metabolite influences physiology of the 
liver. 

In chick embryo hepatocytes, 3,5-T2 decreased the 
activity of NKA through the activation of PKA, PKC and 
PI3K, which was comparable to that exerted by T3

84. NKA 
activity has been shown to be elevated by T3; however, 3,5-
T2 decreased its activity in fish liver88. In liver, NKA plays 
a key role in the physiology and structure of hepatocytes, 
and Na+ and K+ gradients produced by NKA was essential 
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to regulate the transport of bile acid and water89. We found 
increased NKA and HKA activities after T2 treatment in 
hepatocytes of immersion-stressed fish which indicated 
its role in the regulation of H+, Na+ and K+ gradients for 
the normal functioning of liver. Furthermore, we also 
found that T2 facilitates these gradients especially in 
stress-induced hepatocytes.

Vacuolar H+-ATPase activity showed significant 
increase after T2 exposure which was also evident in 
stressed hepatocytes. T2 has an influence on cellular 
acidification and proton gradient via modulating the 
activity of H+-ATPase was evident from the increased 
activity of this ATPases in both non-stressed and stressed 
fish livers followed by T2 treatment. Mitochondrial 
Ca2+ concentration regulation is more critical in cellular 
function that ranges from ATP production to cell death90. 
In the present study, T2 exposure did not influence Ca2+-
ATPase activity in either cytoplasmic or mitochondrial 
origin, which point to insensitivity of this divalent 
cation to T2 in hepatocytes of both non-stressed and 
stressed fish. An increase in intracellular calcium level 
in mitochondria that activates several dehydrogenase 
enzymes, increase in the respiratory rate, H+  extrusion, 
and ATP production; however, prolonged increase 
leads to cell death by apoptosis90. T2 has been shown to 
increase mitochondrial activity and respiration through 
an increase in mitochondrial Ca2+ uptake91. In pituitary 
GH3 cells, T2 rapidly affects intracellular Ca2+ via plasma 
membrane and mitochondrial pathways92.

A role for proton-dependent ATPase, particularly 
in maintaining mitochondrial H+ concentration, which 
could affect the mitochondrial respiratory function and 
ATP production, could be seen in hepatocytes of both 
non-stressed and stressed conditions. Increased activity 
of this transporter in hypoxia stress may indicate the 
increased need of energy metabolism particularly during 
stress. Mitochondrial proton gradient was rapidly affected 
by T2 through modulating the activity of H+ ATPase. We 
found a rise in this ATPase activity in non-stressed and 
stressed fish. Previous studies showed that mitochondria 
and bioenergetics mechanisms become the central target 
of T2. This was supported by our in vitro study, and 
further points to a rapid action of T2 on both cellular and 
mitochondrial proton gradients they would directly affect 
mitochondrial respiratory function.

Overall, the present data indicate that T2 can directly 
induce high proton and potassium gradients in the 
hepatocytes of both non-stressed and immersion-stressed 

fish. Furthermore, this regulatory action of T2 suggests 
a role for T2 in mitochondrial ion transport activity 
particularly during immersion-stress, probably for 
meeting out the energetics associated with a physiological 
response of this metabolite of TH in a way similar to the 
active THs. 
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