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Summary
Thyroid hormones and cortisol are vital for the regulation of metabolic and hydromineral homeostasis in
fish. The levels of triiodothyronine (T

3
), thyroxine (T

4
) and cortisol in the plasma and the indices of

metabolic and hydromineral regulations were quantified in fresh water tilapia after confining them to
net for varied time intervals (2, 6, 12, 24 h) to examine whether thyroid and interrenal interact during
net-confinement. A time-dependent increase (P< 0.001) in plasma cortisol occurred after net-confinement
with a maximum increase at 12 h, indicating an induction of stress response in this fish.  Confinement of
tilapia to net for 6 and 12 h did not alter plasma T

3 
but significantly decreased (P< 0.05) its level at 24 h.

Plasma T
4
 remained unaffected at all intervals tested. Net-confinement produced a substantial increase

in the plasma glucose (P< 0.01) at all intervals tested and a maximum rise was found at 6 h. Branchial
Na+, K+-ATPase activity increased (P< 0.01) and renal Na+, K+-ATPase activity decreased (P< 0.01)
after 12 and 24 h net-confinement, with the maximum rise at 12 h.  Plasma Na+ and plasma osmolality
declined significantly (P< 0.05) at 24 h net-confinement.  Overall, the results indicate that net-confinement
evokes stress response in tilapia, which includes a temporal and inverse interaction between T

3
 and

cortisol. The data thus support the hypothesis of a lead role of cortisol in stress response of tilapia.
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Introduction
Fishes are equipped to perceive stressors and able

to respond to the stressors with a complex network of
neuroendocrine and physiological responses. Cortisol, a
stress hormone released from the interrenal gland, in the
hypothalamo-pituitary-interrenal axis (HPI-axis), is
capable of directing many physiological processes
(Wendelaar Bonga, 1997; Bowers et al., 2000; Dang et
al., 2001; Lock and Wendelaar Bonga, 2008). This
corticosteroid regulates hydromineral and metabolic
processes including proliferation of mitochondria-rich
cells of gill epithelia in many fish species (Specker et al.,
1994; Wendelaar Bonga, 1997; Perry, 1997; Mancera and
McCormick, 1999; Mommsen et al., 1999). Moreover,
in tilapia cortisol has been shown to regulate the Na+, K+-
ATPase activity in the osmoregulatory epithelia of tilapia
in both seawater and freshwater (Nolan et al., 1999; Dang
et al., 2000). Thyroid hormones on the other hand, are
known for their control on many physiological processes
related to energy metabolism and growth (Leatherland,
1994; Oommen and Matty, 1997; Power et al., 2001; Peter,
2007). Like cortisol, triiodothyronine (T

3
) and thyroxine

(T
4
), the primary thyroid hormones, released from

hypothalamo-pituitary-thyroid (HPT) axis, regulate water

and mineral balance, although some uncertainty exists
for their role in hydromineral regulation (Leatherland,
1994; Mancera and McCormick, 1999; Schreiber and
Specker, 2000; Peter, 2007).

In fishes, gills, kidneys and intestine, the major
osmoregulatory organs, integrate the osmotic functions
and maintain an optimal hydromineral balance. Thyroid
hormones and cortisol, as the main signaling molecules,
promote the osmotic capacity of these osmoregulatory
tissues (Peter, 2007; Babitha and Peter, 2010). In
freshwater teleosts, active ion uptake is essential to
compensate for the constant losses by diffusion of ions
through the gill epithelia (McCormick, 1995; Perry, 1997;
Marshall and Bryson, 1998; Marshall and Grosell, 2006)
and this leakage of ions through gill epithelium is more
severe during stressor exposure (Wendelaar Bonga, 1997;
Lock and Wendelaar Bonga, 2008). The activity pattern
of Na+, K+-ATPase, the driving force for transepithelial
Na+ transport, has been used extensively as a measure of
hydromineral capacity (Dang et al., 2000; McCormick,
2001). Many stressors are vulnerable to alter this Na
transporter mainly because of its sensitivity to the
regulation of cellular Na and K gradients.

Fishes experience stressors such as handling and
confinement during aquaculture practices that disturb their
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physiologic homeostasis. As fishes are constantly exposed
to stressful conditions in the aquatic medium they have
evolved different stress response systems which have
been expressed at all levels of biological organization (Dini
et al., 2006; Iwama et al., 2006). This response of fishes
to stressors evokes a multitude of integrated physiological
responses which include primary, secondary and tertiary
responses (Barton and Iwama, 1991; Iwama et al., 2006).
The activation of the neuroendocrine system that bring
about biochemical and physiological adaptations ultimately
favour the animal to acclimate to the hostile environment
(Wendelaar Bonga, 1997; Peter, 2007; Lock and
Wendelaar Bonga, 2008).

This study was undertaken to examine whether
thyroid gland and interrenal gland interact during stress
response in fresh water tilapia.  Net-confinement was
practiced in this fish since this handling stressor is known
for its effect to induce stress without any toxic
manipulation (Nolan et al., 1999). The effects of varied
intervals of net-confinement on thyroid hormone and
cortisol production and their interaction on metabolic and
hydromineral regulations were examined in this fish.

Materials and Methods
Animals

Adult Mozambique tilapia, in their pre-spawning
phase and approximately 45 g body mass, were collected
and acclimated in tap water at 28 ± 2°C under natural
photoperiod (12L/12D) for three weeks prior to
experiment. They were fed with commercial fish feed at
a ration of 1.5% of body mass per day. The animal care
and the experimentation were strictly according to the
regulation of Animal Ethical Committee of the University
and there was no mortality during the experiments.

Experimental protocol

Laboratory-acclimated fish were divided into five
groups of six each. Fish in the untreated group 1 were
taken as control. The remaining fish in groups 2 to 5 were
held in a dip-net and made confined for varied intervals
of 2, 6, 12 and 24 h, respectively. Food was withdrawn
24 h prior to killing to ensure optimum experimental
conditions.

Sampling and analyses

Fish in all the groups were sampled on the same
day at the specific time interval after net- confinement.
Fish were collected from the net and anesthetized in a 2-
phenoxyethanol solution (1: 2,000; Sigma Aldrich, St
Louis, MO), and blood samples were collected by caudal

puncture with heparinized syringes fitted with 23 gauge
needle. Plasma was separated by centrifugation (3 min,
5,000 x g) and stored at –20oC. Fish were then killed by
spinal transection and the gill arches and the kidney were
excised and placed in 2 ml of ice cold SEI buffer (0.3 M
sucrose, 20 mM Na

2
EDTA, 0.1 M imidazole, pH 7.1) and

stored at -20o C.

Plasma cortisol, T3 and T4

Cortisol concentrations in plasma samples were
measured by competitive immunoenzymatic assay
(DiaMetra, Foligno, Italy) and the values were expressed
as ng ml-1. The sensitivity and reliability of this method
was examined and the values were comparable to RIA
method reported earlier (Peter, 2007; Peter and Peter,
2007). Plasma T

3
 (Catalog # 3810-96) and T

4
 (Catalog #

2210-96) concentrations were measured by microwell
enzyme immunoassay (EIA: magnetic solid phase) with
kits (Syntron Bioresearch Inc, Carlsbad, California) and
the values were expressed in nmoles L -1.  The sensitivity
of this method was checked by comparison of results from
RIA based on competitive binding of 125I-labelled T

3
 or

T
4
 (Peter et al., 2000) with the EIA results (Peter et al.,

2007).

Plasma glucose and minerals

Plasma glucose levels were measured using a
glucose assay kit (Sigma, St Louis, Missouri, USA). The
plasma [Na] and [K] concentrations were measured with
a flame-photometric auto- analyzer (Systronics, New
Delhi). Plasma osmolality (mOsm.kg-1) was measured
using a micro-osmometer (Gonotec, Germany).

Na+, K+-ATPase activity

The specific activity of ouabain-sensitive Na+, K+-
ATPase was measured in homogenates (Ho) prepared
from branchial and renal tissues as described earlier (Peter
et al., 2000). The protein concentration in homogenates
was measured using a commercial Biuret protein-assay
kit (Bio-Rad, Hercules, USA) with bovine serum albumin
as the standard. Phosphate release was quantified
spectrophotometrically and the specific activity expressed
as µmol P

i
. h-1. mg protein-1.

Statistical analysis

Before statistical analyses, the data were checked
for normal distribution and variance homogeneity. Two-
way analysis of variance (ANOVA) and Student-
Newman-Keul’s test were employed to test the
significance of the difference between the treatment
groups using Instat-3 Software (GraphPad Software Inc.,
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San Digeo, California). Significant difference between
groups was accepted if P<0.05 and the values are in mean
± SEM (n = 6).

Results
Plasma cortisol, T3 and T4

The plasma cortisol increased to significant (P<0.05)
levels in the fish with increasing duration of net-
confinement (Fig 1B). Net-confinement, on the other hand,
produced a significant (P<0.01) reduction in the level of
plasma T

3
 at 24 h confinement though its level remained

unaffected at 2, 6 and 12 h net-confinement and it showed
a tendency to rise at 6 h (Fig. 2). The plasma T

4, 
however,

remained unaffected after net-confinement for varied
intervals (Fig. 2).
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Fig. 1. Plasma glucose (mg dL-1) and cortisol (ng mL-1)
levels in tilapia exposed to net-confinement for varied time
slots. Each point is mean ± SEM for six fish.

* P<0.05; ** P<0.01; *** P<0.001

Fig. 2. Plasma T
3 
and T

4
 (nmol L-1) in tilapia exposed to

net confinement for varied time slots. Each point is mean
± SEM for six fish.

* Denotes (P<0.05) significant when compared with
control (0).

Plasma glucose and minerals

Significant hyperglycaemia (P< 0.001) occurred in
fish at varied tested intervals of net-confinement (Fig. 1A).
The plasma Na showed a reduction (P<0.05) at 24 h net-
confinement (Table 1). The plasma osmolality showed a
reduction at this time of confinement whereas plasma K
remained unaffected (Table 1).

Na+
, K

+-ATPase activity

Branchial  Na+
, 
K +-ATPase activity showed

significant (P<0.05) increase at 12 and 24 h  net-
confinement, whereas the renal Na+

, 
K+-ATPase activity

decreased (P<0.05 and P<0.0) at these intervals  (Fig.3).

Discussion

Evidences are presented to the effect that confining
tilapia to net induces stress response and that involves a
temporal and inverse interaction between cortisol and T

3
,

the active thyroid hormone. The elevated cortisol and
glucose in the plasma of tilapia clearly indicate a classic
stress response due to stress induction in this fish. As a
common response to acute stress, hyperglycaemia occurs
due to the rapid effects of catecholamines on
glycogenolysis and the long-term effects of cortisol on
gluconeogenesis (Van der Boon et al., 1991; Wendelaar

Salinity effects on fish stress response
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Bonga, 1997). Mobilization of energy substrates including
glucose in response to the stressor thus becomes an

Fig. 3. Gill and kidney Na+, K+‹ ATPase activities in tilapia
exposed to net confinement for varied time slots. Each
point is mean ± SEM for six fish.
* Denotes (P<0.05) and ** denotes (P<0.01) significant
when compared with control (0).

essential metabolic strategy during stress adaptation.
Cortisol is known for its stimulatory action on
gluconeogenesis in common carp (Janssens and
Waterman, 1988) probably because of the activation of
gluconeogenic enzyme like glucose-6-phosphatase

(Mommsen et al., 1999). Glucose appears to be the main
energy source the fish always relies on (Ruane et al.,
2001) and the elevated plasma glucose has been reported
in carp Cyprinus carpio during transfer, though these
responses were not consistent (Pottinger, 1998).
Hyperglycaemia during confinement has been linked to
gluconeogenesis or enhanced glycogenolysis or a
decreased clearance of glucose from the blood as reported
earlier in tilapia (Vijayan et al., 1997), sea raven (Vijayan
and Moon, 1994) and sea bream (Arends et al., 1999).
The significant metabolic role of cortisol in fish includes
the stimulation of pathways that increase blood glucose
levels (Leach and Taylor, 1980; Vijayan et al., 1997; Diouf
et al., 2000). Therefore, glycogenolysis and
gluconeogenesis, in which metabolites such as amino acids
(Milligan, 1997) and lactate (Young and Cech, 1993, 1994)
are used as substrates, are activated during stress.
Alternately, the rapid rise in plasma glucose in response
to stressors may also be attributed to activation of the
brain-sympathetic-chromaffin (BSC) axis and the release
of catecholamines by the chromaffin cells (Barton and
Iwama, 1991; Arends et al., 1999; Ruane et al., 2001).
Therefore, the rise in glucose and cortisol are indirectly
considered as the indicators of sympathetic activation and
the activation of HPI axis during stress (Rotlland et al.,
2000; Wendelaar Bonga, 1997; Peter and Peter, 2009).

Fishes respond to stressors by eliciting physiological
responses that include elevation of cortisol and adrenaline

Table. 1: Levels of plasma minerals (mmol L-1) and osmolality (mOsmol kg-1) in tilapia exposed to net-confinement
for varied time slots. Values are mean ± SEM for six fish.

Na K Osmolality

0      142.8 + 1.6     4.61 + 0.2             315 +0.2

2      141.3 + 1.9     4.62 + 0.3 311 + 0.2

6      134.7 + 1.7     4.55 + 0.2 308 + 0.2

12      132.4 + 1.5     4.56 + 0.3 306 + 0.3

24      128.9 + 1.4*    4.12 + 0.2 303 + 0.2*

* Denotes (P<0.05) significant when compared with control (0).
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(Wendelaar Bonga 1997). The time-dependent rise in
plasma cortisol in tilapia establishes that these fish are
stressed as reported earlier (Vijayan et al., 1997; Dini et
al., 2006). The rise in plasma cortisol after net-confinement
has also been reported in many fishes including striped
bass (Noga et al., 1994), paddlefish (Barton et al., 1998),
gilthead sea bream (Arends et al., 1999), juvenile pallid
and sturgeons (Barton et al., 2000), rainbow trout
(Trenzado et al., 2003; Pankhurst et al., 2008) and the
olive flounder (Hur et al., 2007). Many extrinsic and
intrinsic factors have been known to induce the cortisol
release in fishes which include age, sex and maturity of
the fish (Sumpter, 1997), the environmental temperature
(Sumpter et al., 1986), the species and strain of fish
(Pickering and Pottinger, 1989) and the chemical
composition of the water (Pickering and Pottinger, 1987).

Cortisol exerts multiple physiologic actions in fish
that include hydromineral and metabolic regulations
(Mommsen et al., 1999; Laiz-Carrion et al., 2002, 2003;
Gallo and Civinini, 2003; Sangiao-Alvarellos et al., 2005;
McCormick et al., 2008). The plasma level of cortisol is
often considered as a measure of the magnitude of stress
response (Wendelaar Bonga, 1997) and under acute stress
it can easily shoot up many-folds to enhance the
mobilization of energy reserves and metabolic rate
(Wendelaar Bonga, 1997; Flik et al., 2006). Likewise,
cortisol contributes to hydromineral regulation in
freshwater fish, though it is often referred to as a seawater
hormone (McCormick, 2001). Branchial Na+, K+-ATPase
activity, a measure of hydromineral capacity, increases
in freshwater tilapia after cortisol treatment (Dang et al.,
2000). Similar to cortisol, TH’s also direct metabolic and
osmoregulatory function in fish (Peter et al., 2000, 2007;
Peter and Peter, 2007). Studies on freshwater tilapia have
provided evidence that physiological concentrations of
both T

3
 and T

4
 enhance branchial Na+, K+-ATPase activity

and chloride cell (CC) dynamics (Peter et al., 2000).  The
importance of TH’s to maintain Na and water balance
during an osmotic challenge in the mummichog has been
reported by Knoeppel et al. (1982) and Grau (1987).
However, in teleosts such as Salmo salar (Saunders et
al., 1985; Shrimpton and McCormick, 1998) and Salmo
gairdneri (Madsen, 1990), no effect of TH was found on
Na+, K+-ATPase activity. In the present study, on the

contrary, stress induction appears to reduce the plasma
T

3
 substantially, suggesting a lack of T

3
 action during net-

confinement.

The present data thus point to specific metabolic
and hydromineral actions of cortisol during stress in
freshwater tilapia. As we observed decrease of T

3
 action

in tilapia after prolonged net- confinement, the possibility
of TH involvement in the metabolic and hydromineral
regulation is doubtful. In this context, it is reasonable to
presume that cortisol may take up the lead of regulating
the metabolic and hydromineral actions in the absence of
T

3
 action. Changes in the deiodination activity in the

peripheral tissues are  important mechanisms to modulate
TH activity in mammals (Kuiper et al., 2005) and fish
(Eales, 1985; Eales et al., 1990; Van der Geyten et al.,
2005; Walpita et al., 2007).

There are indications that thyroid activity and the cortisol
release are interrelated in fishes (Walpita et al., 2007;
Peter, 2007; Peter and Peter, 2009). In this study,
confinement stress brought about decreased plasma T

3

and not plasma T
4
, supporting the view that alterations of

thyroid function occur particularly on the actions of T
3

during stress in fish. A modification of T
3
 metabolism

and its availability in our net-confined tilapia could thus
be ascribed to an adaptive strategy of fish to combat stress.
Similar decline of plasma T

3
 has also been reported in

rainbow trout (Himick and Eales, 1990) and in perch
(Anabas testudineus) exposed to kerosene (Peter et al.,
2007). Modification of peripheral deiodination and
thyroid axis during stress were also demonstrated in Nile
tilapia (Walpita et al., 2007).

In tilapia, thus, a temporal and inverse yet functional
relationship exists between the interrenal and thyroidal
axis in the face of a stressor challenge, suggesting a lead
role of cortisol in stress response. This idea is consistent
with a negative interaction of the thyroid and interrenal
axes reported earlier for salmonids (Young et al., 1989;
Vijayan et al., 1997) though no correlation between thyroid
activity and cortisol has been observed in the rainbow
trout (Madsen, 1990; Gomez et al., 1997) and in
mummichog (Mancera and McCormick, 1999). In some
studies the possibility of a rapid clearance of TH’s after
cortisol treatment has been proposed (Vijayan et al., 1988;
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Brown et al., 1991). For example, in brook trout, cortisol
increased the hepatic conversion of T

4
 to T

3
 (Vijayan et

al., 1988). It seems that in tilapia cortisol is contributing to
the metabolic and hydromineral regulations during net
confinement. The hyperglycemic effects observed in the
net-confined tilapia may thus support the metabolic role
of cortisol, though TH’s also direct metabolic processes
in fish tissues (Leatherland, 1994; Power et al., 2001;
Peter et al., 2007; Peter and Peter, 2009).

Na+, K+-ATPase activity is under multiple hormonal
control with cortisol in a dominant role (Young et al.,
1995; McCormick, 1995, 2001; Dang et al., 2000; Evans,
2002).  The concomitant rise in cortisol and the
upregulation of branchial Na+, K+-ATPase activity in
tilapia indicate a cortisol-directed Na pump activity in
this stressed fish (Nolan et al., 1999). On the contrary,
the decline of renal Na

+
, K

+
-ATPase in tilapia after 24 h

net confinement indicates a disturbed osmotic function
of kidney tubules to retain Na+ as this Na transporter
energizes Na+ reabsorption and also the transport of other
ions or uncharged solutes in the kidney tubules. Similar
inhibition of renal Na

+
, K

+
-ATPase activity has also been

observed in tilapia after seawater acclimation (Nolan et
al., 1999) and in mummichog (Epstein et al., 1967).
Interestingly, these differential actions of Na

+
, K

+
-ATPase

activity on gills and kidney further point to the ability of
cortisol to integrate the osmotic functions of these organs
as evident in catfish organs (Babitha and Peter, 2010).

Overall, the present results indicate that tilapia
shows a pattern of stress response to net- confinement
with characteristic rises in plasma glucose and cortisol
associated with compensatory metabolic and hydromineral
modifications. Evidences are also presented to the effect
that net- confinement produces temporal and inverse
interaction of cortisol and T

3
 which ultimately permits

cortisol to direct the compensatory stress response in this
fish.
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