In silico Docking Studies on Cytochrome P450 Enzymes of Helicoverpa armigera (Hubner) and Trichogramma cacoeciae Marchal and Implications for Insecticide Detoxification


Affiliations

  • National Bureau of Agriculturally Important Insects, Molecular Entomology Laboratory, Bangalore, Karnataka, 560 024, India

Abstract

In silico docking of cytochrome P450 monooxygenase (CYP450) of an insect, Helicoverpa armigera (Hübner) and a parasitoid, Trichogramma cacoeciae Marchal was studied with two insecticides, monocrotophos and fenvalerate. The CYP450 sequences of H. armigera (CYP9A12), T. cacoeciae (CYP4G12) and a human microsomal sequence CYP3A4, as positive control were retrieved from NCBI’s GenBank database. The structure, as predicted by SOPMA, of CYP450 in H. armigera contained 78.7% helix and 43.3% sheets, while that of T. cacoeciae contained 60.6% helix and 68.5% sheets. The three-dimensional molecular models of CYP450 of H. armigera and T. cacoeciae indicated that 96.5 and 97.2% residues, respectively, were in the most favored region. The docking studies revealed that the binding energy of H. armigera was -3.50 and -7.65 kcal/mole compared to the binding energy of T. cacoeciae -2.96 and -5.28 kcal/mole for monocrotophos and fenvalerate, respectively, inferring stronger interaction of H. armigera CYP450 with the insecticides and thereby higher potential for resistance in H. armigera.

Keywords

Cytochrome P450, Helicoverpa armigera, Trichogramma cacoeciae, In silico Molecular Docking.

Subject Discipline

Entomology

Full Text:

Refbacks

  • There are currently no refbacks.