Enzyme profile of insecticide-resistant phenotypes of Aedes aegypti from Bagua, Peru

Jump To References Section

Authors

  • Department of Science, University Private Antenor Orrego, Trujillo ,PE
  • Department of Microbiology and Parasitology, University National of Trujillo, Trujillo ,PE
  • Department of Microbiology and Parasitology, University National of Trujillo, Trujillo ,PE
  • Laboratory of Technology in Natural Products, Federal Fluminense University, Niterói ,BR
  • Department of Microbiology and Parasitology, University National of Trujillo, Trujillo ,PE
  • Department of Science, University Private Antenor Orrego, Trujillo ,PE

DOI:

https://doi.org/10.18311/jbc/2023/33923

Keywords:

Aedes aegypti, deltamethrin, enzymes profile, insecticide resistance, temephos

Abstract

Temephos and deltamethrin insecticides have been widely used to control Aedes aegypti in Bagua Grande district, Utcubamba, Amazonas, Peru. For this reason, the enzyme profile related to temephos and deltamethrin resistance in A. aegypti from Bagua Grande were evaluated. To determine the resistance status, bioassays were conducted with temephos using larvae and with deltamethrin using adults. Enzymes profile were evaluated by biochemical assays of αEST, βEST, GSTs, and remaining AChE in survived individuals to selective doses of both insecticides. Esterase patterns of larvae and adults were observed by native-PAGE. The population showed temephos susceptibility, with RR 50 = 3.06 and 83.95% mortality, and deltamethrin resistance with a mortality equal to 1.21%. Enzyme assays revealed highly altered levels of GST and AChE in larvae and altered levels of αEST and highly altered levels of GST and AChE in adults. Native-PAGE only showed common bands to susceptible strain. Results suggest that the presence of GST and AChE do not improve temephos resistance, while αEST, GST and AChE mechanisms are involved in deltamethrin resistance in A. aegypti from Bagua Grande.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-23

How to Cite

OFELIA M. CÓRDOVA PAZ-SOLDÁN, VANESSA PÉREZ ROJAS, FERNANDO R. VILLALAZ MORI, RICARDO DIEGO DUARTE GALHARDO DE ALBUQUERQUE, FRANKLIN R. VARGAS VÁSQUEZ, & JOSÉ G. GONZÁLEZ CABEZA. (2023). Enzyme profile of insecticide-resistant phenotypes of <I>Aedes aegypti</I> from Bagua, Peru. Journal of Biological Control, 37(1), 51–65. https://doi.org/10.18311/jbc/2023/33923

Issue

Section

Research Articles
Received 2023-06-01
Accepted 2023-08-13
Published 2023-08-23

 

References

Adhikari, K., and Khanikor, B. 2021. Gradual reduction of susceptibility and enhanced detoxifying enzyme activities of laboratory-reared Aedes aegypti under exposure of temephos for 28 generations. Toxicol Rep, 8: 1886-1889. https://doi.org/10.1016/j.toxrep.2021.11.013 DOI: https://doi.org/10.1016/j.toxrep.2021.11.013

Al-Amin, H. M., Johora, F. T., Irish, S. R., Hossainey, M. R. H., Vizcaino, L., Paul, K. K., Khan, W. A., Haque, R., Alam, M. S., and Lenhart, A. 2020. Insecticide resistance status of Aedes aegypti in Bangladesh. Parasit Vectors, 13: 6-13. https://doi.org/10.1186/s13071-020-04503-6 DOI: https://doi.org/10.1186/s13071-020-04503-6

Amelia-Yap, Z. H., Chen, C. D., Sofian-Azirun, M., and Low, V. L. 2018. Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. Parasit Vectors, 11: 2-4. https://doi.org/10.1186/s13071-018-2899-0 DOI: https://doi.org/10.1186/s13071-018-2899-0

Amorim, L. B., Helvecio, E., de Oliveira, C. M. F., and Ayres, C. F. J. 2013. Susceptibility status of Culex quinquefasciatus (Diptera: Culicidae) populations to the chemical insecticide temephos in Pernambuco, Brazil. Pest Manag Sci, 69: 1307-1314. https://doi.org/10.1002/ ps.3502 DOI: https://doi.org/10.1002/ps.3502

Aponte, A., Penilla, R. P., Rodríguez, A. D., and Ocampo, C. B. 2019. Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Tropica, 191: 7-10. https://doi.org/10.1016/j.actatropica.2018.12.021 DOI: https://doi.org/10.1016/j.actatropica.2018.12.021

Badiou, A., Meled, M., and Belzunces, L. 2008. HoneybeeApis mellifera acetylcholinesterase—A biomarker to detect deltamethrin exposure. Ecotoxicol Environm Saf, 69: 248-252. https://doi.org/10.1016/j.ecoenv.2006.11.020 DOI: https://doi.org/10.1016/j.ecoenv.2006.11.020

Barrera, R. 2015. Editorial: Control de los mosquitos vectores del dengue y del chikunguña: ¿es necesario reexaminar las estrategias actuales? Biomedica, 35: 1. https://doi. org/10.7705/biomedica.v35i3.3053.

Becker, N. 1997. Microbial control of mosquitoes: Management of the upper rhine mosquito population as a model programme. Parasitol Today, 13, 485–487. https://doi.org/10.1016/S0169-4758(97)01154-X DOI: https://doi.org/10.1016/S0169-4758(97)01154-X

Benelli, G., Jeffries, C. L., and Walker, T. 2016. Biological control of mosquito vectors: Past, Present, and Future. Insects, 7(4):52. https://doi.org/10.3390/ insects7040052 DOI: https://doi.org/10.3390/insects7040052

Bisset, J. A., Rodríguez, M. M., Molina, D., Díaz, C., and Soca, L. A. 2001. Esterasas elevadas como mecanismo de resistencia a insecticidas organofosforados en cepas de. Aedes aegypti Rev Cuba Med Trop, 53: 37-43.

Bisset, J. A., Marín, R., Rodríguez, M. M., Severson, D. W., Ricardo, Y., French, L., Díaz, M., and Pérez, O. 2007. Insecticide resistance in two Aedes aegypti (Diptera Culicidae) strains from Costa Rica. J Med Entomol, 50: 355-358. https://doi.org/10.1603/ME12064 DOI: https://doi.org/10.1603/ME12064

Bisset, J. A., Rodríguez, M. M., Fernández, D., and Palomino, M. 2007. Resistencia a insecticidas y mecanismos de resistencia en Aedes aegypti (Diptera: Culicidae) de 2 provincias del Perú. Rev. Cub Med Trop, 59: 202-208.

Bisset, J. A., Rodríguez, M. M., Piedra, L. A., Cruz, M., Gutiérrez, G., and Ruiz, A. 2019. Reversal of resistance to the larvicide temephos in an Aedes aegypti (Diptera: Culicidae) laboratory strain from Cuba. J Med Entomol, 57: 3-5. https://doi.org/10.1093/jme/tjz206 DOI: https://doi.org/10.1093/jme/tjz206

Bolognesi, C., and Merlo, F. D. 2019. Pesticides: Human health effects. In: J. O. Nriagu (Ed.), Encyclopedia of Environmental Health. Amsterdam: Elsevier, pp. 1-16. https://doi.org/10.1016/B978-0-12-409548-9.11818-4 DOI: https://doi.org/10.1016/B978-0-12-409548-9.11818-4

Brogdon, W. G. 2015. Insecticide resistance monitoring: Microplate enzyme activity assays introduction. In: E. M. Dotson (Ed.), Methods in Anopheles Research. North Bethesda: Malaria Research and Reference Reagent Resource Center (MR4), pp. 252–257.

Cabezas, S. C. 2005. Dengue en el Perú: Aportes para su diagnóstico y control. Rev Peru Med Exp Salud Pub, 22: 212-219.

Centro Nacional de Epidemiología, Prevención y Control de Enfermedades. 2022. Sala situacional de dengue. Avaliable in: https://www.dge.gob.pe/sala-situacionaldengue/#grafico01

Chavasse, D. C. 1997. Chemical methods for the control of vectors and pests of public health importance. Avaliable in: https://apps.who.int/iris/bitstream/handle/10665/ 63504/WHO_CTD_WHOPES_97.2.pdf

Chávez, J., Vargas, J., and Vargas, F. 2005. Resistencia a deltametrina en dos poblaciones de Aedes aegypti (Diptera, Culicidae) del Perú. Rev Peru Biol, 12. https:// doi.org/10.15381/rpb.v12i1.2372 DOI: https://doi.org/10.15381/rpb.v12i1.2372

ClimateData. 2022. Clima Bagua Grande Perú. Climate-Data. org. Avaliable in: https://es.climate-data.org/americadel-sur/peru/amazonas/bagua-grande-33770/

Coleman, M., and Hemingway, J. 2007. Insecticide resistance monitoring and evaluation in disease transmitting mosquitoes. J Pesticide Sci, 32: 69-76. https://doi. org/10.1584/jpestics.R07-01 DOI: https://doi.org/10.1584/jpestics.R07-01

Conde, M., Orjuela, L. I., Castellanos, C. A., HerreraVarela, M., Licastro, S., and Quiñones, M. L. 2014 Evaluación de la susceptibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en los años 2007 y 2011. Biomedica. 35: 47-49. https://doi.org/10.7705/ biomedica.v35i1.2367 DOI: https://doi.org/10.7705/biomedica.v35i1.2367

Contreras-Perera, Y., Ponce-Garcia, G., Villanueva-Segura, K., Lopez-Monroy, B., Rodríguez-Sanchez, I. P., Lenhart, A., Manrique-Saide, P., and Flores, A. E. 2020. Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasit Vectors, 13: 8-20. https://doi. org/10.1186/s13071-020-04093-3 DOI: https://doi.org/10.1186/s13071-020-04093-3

Cuamba, N., Morgan, J. C., Irving, H., Steven, A., and Wondji, C. S. 2010. High level of pyrethroid resistance in an Anopheles funestus population of the Chokwe district in Mozambique. PLoS ONE, 5: 3-7. https://doi. org/10.1371/journal.pone.0011010 DOI: https://doi.org/10.1371/journal.pone.0011010

Decreto Supremo Nº 029-2021-SA. 2021. Decreto Supremo que declara en Emergencia Sanitaria por brote y riesgo inminente de brote por dengue en 51 distritos priorizados de los departamentos de Piura, San Martín, Loreto, Huánuco, Junín, Cajamarca, Cusco, Madre de Dios, Ayacucho, Lima, Amazonas, Ucayali, Pasco, Tumbes e Ica. Avaliable in: https://busquedas.elperuano. pe/normaslegales/decreto-supremo-que-declara-enemergencia-sanitaria-por-brot-decreto-supremo-n-029- 2021-sa-1997353-1/

Deming, R., Manrique-Saide, P., Medina Barreiro, A., Cardeña, E. U. K., Che-Mendoza, A., Jones, B., Liebman, K., Vizcaino, L., Vazquez-Prokopec, G., and Lenhart, A. 2016. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasit Vectors 9: 5-9. https://doi.org/10.1186/s13071-016-1346-3 DOI: https://doi.org/10.1186/s13071-016-1346-3

Diniz, M. M. C. D. S. L., Henriques, A. D. D. S., Leandro, R. D. S., Aguiar, D. L., Beserra, and E. B. 2014. Resistance of Aedes aegypti to temephos and adaptive disadvantages. Rev Saúde Pub, 48: 777. https://doi. org/10.1590/S0034-8910.2014048004649 DOI: https://doi.org/10.1590/S0034-8910.2014048004649

Dusfour, I., Vontas, J., David, J. P., Weetman, D., Fonseca, D. M., Corbel, V., Raghavendra, K., Coulibaly, M. B., Martins, A. J., Kasai, S., and Chandre, F. 2019. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLOS Negl Trop Dis, 13: 2-15. https://doi.org/10.1371/ journal.pntd.0007615 DOI: https://doi.org/10.1371/journal.pntd.0007615

Engdahl, C. 2017. Selective inhibition of acetylcholinesterase 1 from disease-transmitting mosquitoes: Design and development of new insecticides for vector control. Umeå University, Umeå, Sweden, Doctoral Thesis, English. Avaliable in: https://www.diva-portal.org/ smash/get/diva2:1094489/FULLTEXT01.pdf

Francis, S., Saavedra-Rodriguez, K., Perera, R., Paine, M., Black, W. C., and Delgoda, R. 2017. Insecticide resistance to permethrin and malathion and associated mechanisms in Aedes aegypti mosquitoes from St. Andrew Jamaica. PLoS ONE, 12: 6-11. https://doi. org/10.1371/journal.pone.0179673 DOI: https://doi.org/10.1371/journal.pone.0179673

Gillett, J. D., Roman, E. A., and Phillips, V. 1977. Erratic hatching in Aedes eggs: A new interpretation. Proceed Royal Soc London Series B Biol Sci, 196: 223–231. https://doi.org/10.1098/rspb.1977.0038 DOI: https://doi.org/10.1098/rspb.1977.0038

Gonzales, C. L., Rosado, L. L. P., and Zúñiga, D. J. 2017. Determinación de la duración de la fase acuática del ciclo biológico de Aedes aegypti en las localidades de Santa María de Nieva, Bagua Grande y Pedro Ruiz Gallo, Amazonas noviembre-diciembre 2017 (Resolución Directoral Regional Sectorial N°1592- 2017-Gobierno Regional Amazonas/DRSA Chachapoyas). DIRESA Amazonas, Chachapoyas. Avaliable in: http://siga.regionamazonas.gob.pe/docs/ portal/contenidos/14/28122017160758147753559.pdf

Granada, Y., Mejía-Jaramillo, A. M., Zuluaga, S., and TrianaChávez, O. 2021. Molecular surveillance of resistance to pyrethroids insecticides in Colombian Aedes aegypti populations. PLoS Negl Trop Dis, 15: 3-14. https://doi. org/10.1371/journal.pntd.0010001 DOI: https://doi.org/10.1371/journal.pntd.0010001

Helvecio, E., Romão, T. P., de Carvalho-Leandro, D., de Oliveira, I. F., Cavalcanti, A. E. H. D., Reimer, L., de Paiva, C. M., de Oliveira, A. P. S., Paiva, P. M. G., Napoleão, T. H., Wallau, G. L., de Melo, N. O. P., MeloSantos, M. A. V., Ayres, C. F. J. 2020. Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. Pesticide Biochem Physiol, 165: 4-8. https:// doi.org/10.1016/j.pestbp.2019.10.002 DOI: https://doi.org/10.1016/j.pestbp.2019.10.002

Hemingway, J., Hawkes, N. J., McCarroll, L., and Ranson, H. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Bioche Mol Biol, 34: 653-665. https://doi.org/10.1016/j.ibmb.2004.03.018 DOI: https://doi.org/10.1016/j.ibmb.2004.03.018

Instituto Nacional de Estadística e Informática. 2021. Directorio nacional de municipalidades provinciales, distritales y de centros poblados 2021. INEI, Lima. Avaliable in: https://cdn.www.gob.pe/uploads/ document/file/3444641/Directorio%20 Nacional%20 de%20Municipalidades%20Provinciales.pdf

Kostaropoulos, I., Papadopoulos, A. I., Metaxakis, A., Boukouvala, E., and Papadopoulou-Mourkidou, E. 2001. Glutathione s–transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol, 31: 315- 319. https://doi.org/10.1016/S0965-1748(00)00123-5 DOI: https://doi.org/10.1016/S0965-1748(00)00123-5

Lee, R. M. L., Choong, C. T. H., Goh, B. P. L., Ng, L. C., and Lam-Phua, S. G. 2014. Bioassay and biochemical studies of the status of pirimiphos-methyl and cypermethrin resistance in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Singapore. Trop Biomed, 31: 676-678.

León, R. B. 1997. Guía práctica para la identificación de Aedes aegypti. Ministerio de Salud. Instituto Nacional de Salud, Lima. Avaliable in: https://repositorio.ins.gob. pe/xmlui/handle/INS/138

Leong, C. S., Vythilingam, I., Wong, M. L., Wan Sulaiman, W. Y., and Lau, Y. L. 2018. Aedes aegypti (Linnaeus) larvae from dengue outbreak areas in Selangor showing resistance to pyrethroids but susceptible to organophosphates. Acta Tropica, 185: 118-125. https:// doi.org/10.1016/j.actatropica.2018.05.008 DOI: https://doi.org/10.1016/j.actatropica.2018.05.008

Leong, C. S., Vythilingam, I., Liew, J. W. K., Wong, M. L., Wan-Yusoff, W. S., and Lau, Y. L. 2019. Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia. Parasit Vectors, 12: 1-15. https:// doi.org/10.1186/s13071-019-3472-1 DOI: https://doi.org/10.1186/s13071-019-3472-1

Lesmana, S. D., Maryanti, E., Susanty, E., Afandi, D., Harmas, W., Octaviani, D. N., Zulkarnain, I., Pratama, M. A. B., and Mislindawati, M. 2022. Organophosphate resistance in Aedes aegypti: Study from dengue hemorrhagic fever endemic subdistrict in Riau, Indonesia. Rep Biochem Mol Biol, 10: 592-594. https://doi.org/10.52547/ rbmb.10.4.589 DOI: https://doi.org/10.52547/rbmb.10.4.589

Lima, E. P., Paiva, M. H. S., de Araújo, A. P., da Silva, L. V. G., da Silva, U. M., de Oliveira, L. N., Santana, A. E. G., Barbosa, C. N., de Paiva, N. C. C., Goulart, M. O., Wilding, C. S., Ayres, C. F. J., de Melo, S. M. A. V. 2011. Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasit Vectors, 4: 5. https://doi.org/10.1186/1756-3305-4-5 DOI: https://doi.org/10.1186/1756-3305-4-5

Lin, Y. H., Tsen, W. L., Tien, N. Y., and Luo, Y. P. 2013. Biochemical and molecular analyses to determine pyrethroid resistance in Aedes aegypti. Pesticide Biochem Physiol, 107: 268-275. https://doi. org/10.1016/j.pestbp.2013.08.004 DOI: https://doi.org/10.1016/j.pestbp.2013.08.004

Liu, N. 2015. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Ann Rev Entomol, 60: 537-543. https://doi.org/10.1146/annurevento-010814-020828 DOI: https://doi.org/10.1146/annurev-ento-010814-020828

Lumjuan, N., Stevenson, B. J., Prapanthadara, L. A., Somboon, P., Brophy, P. M., Loftus, B. J., Severson, D. W., and Ranson, H. 2007. The Aedes aegypti glutathione transferase family. Insect Biochem Mol Biol, 37: 1029- 1034. https://doi.org/10.1016/j.ibmb.2007.05.018 DOI: https://doi.org/10.1016/j.ibmb.2007.05.018

Lumjuan, N., Rajatileka, S., Changsom, D., Wicheer, J., Leelapat, P., Prapanthadara, L. A., Somboon, P., Lycett, G., and Ranson, H. 2011. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol, 41: 205-209. https://doi.org/10.1016/j. ibmb.2010.12.005 DOI: https://doi.org/10.1016/j.ibmb.2010.12.005

Lwande, O. W., Obanda, V., Lindström, A., Ahlm, C., Evander, M., Näslund, J., and Bucht, G. 2020. GlobeTrotting Aedes aegypti and Aedes albopictus: Risk factors for arbovirus pandemics. Vector-Borne Zoon Dis, 20: 72-76. https://doi.org/10.1089/vbz.2019.2486 DOI: https://doi.org/10.1089/vbz.2019.2486

Mangas, I., Estevez, J., Vilanova, E., and França, T. C. C. 2017. New insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology, 376: 30-43. https://doi.org/10.1016/j.tox.2016.06.006 DOI: https://doi.org/10.1016/j.tox.2016.06.006

McAllister, J. C., and Scott, M. 2020. CONUS Manual for evaluating insecticide resistance in mosquitoes using the CDC bottle bioassay kit. Atlanta: The Centers for Disease Control and Prevention (CDC), Avaliable in: https://www.cdc.gov/mosquitoes/mosquito-control/ professionals/cdc-bottle-bioassay.html

Morales, D., Ponce, P., Cevallos, V., Espinosa, P., Vaca, D., and Quezada, W. 2019. Resistance status of Aedes aegypti to deltamethrin, malathion, and temephos in Ecuador. J Am Mosquito Control Assoc, 35: 116-119. https://doi.org/10.2987/19-6831.1 DOI: https://doi.org/10.2987/19-6831.1

Novak, R. J., Gubler, J., and Underwood, D. 1985. Evaluation of slow-release formulations of temephos (Abate) and Bacillus thuringiensis var. israelensis for the control of Aedes aegypti in Puerto Rico. J Am Mosq Control Assoc, 1: 449-453.

Palomino, M., Pinto, J., Yañez, P., Cornelio, A., Dias, L., Amorim, Q., Martins, A. J., Lenhart, A., and Lima, J. B. P. 2022. First national-scale evaluation of temephos resistance in Aedes aegypti in Peru. Parasit Vectors, 15: 1-10. https://doi.org/10.1186/s13071-022-05310-x DOI: https://doi.org/10.1186/s13071-022-05310-x

PAHO (Pan American Health Organization). 2001. A timeline for dengue in the Americas to December 31, 2000 and noted first occurences. Avaliable in: https://www.paho org/hq/dmdocuments/2010/A%20timeline%20for%20 dengue.pdf

PAHO (Pan American Health Organization). 2023. Atualização Epidemiológica Dengue na Região das Américas. Avaliable in: https://www.paho.org/pt/ file/125180/download?token=9zzU9nm8

Pareja-Loaiza, P. X., Varon, S. L., Vega, G. R., GómezCamargo, D., Maestre-Serrano, R., and Lenhart, A. 2020. Mechanisms associated with pyrethroid resistance in populations of Aedes aegypti (Diptera: Culicidae) from the Caribbean coast of Colombia. PLoS ONE, 15: 7-25. https://doi.org/10.1371/journal.pone.0228695 DOI: https://doi.org/10.1101/2020.01.23.916577

Perera, M. D. B., Hemingway, J., and Karunaratne, S. P. 2008. Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malaria J, 7: 4-10. https://doi.org/10.1186/1475-2875-7-168 DOI: https://doi.org/10.1186/1475-2875-7-168

Pinto, J., Palomino, M., Mendoza-Uribe, L., Sinti, C., Liebman, K. A., and Lenhart, A. 2019. Susceptibility to insecticides and resistance mechanisms in three populations of Aedes aegypti from Peru. Parasit Vectors, 12: 2-10. https://doi.org/10.1186/s13071-019-3739-6 DOI: https://doi.org/10.1186/s13071-019-3739-6

Polson, K. A., Brogdon, W. G., Rawlins, S. C., and Chadee, D. D. 2011. Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta Tropica, 117: 34-36. https://doi.org/10.1016/j. actatropica.2010.09.005 DOI: https://doi.org/10.1016/j.actatropica.2010.09.005

Poupardin, R., Srisukontarat, W., Yunta, C., and Ranson, H. 2014. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti. PLoS Negl Trop Dis, 8:5-9. https://doi. org/10.1371/journal.pntd.0002743 Romaní, C. B., Terrones, A. R., Chávez, M. M., Aguilar, R. A., Cabezas, C. M., and Trelles, J. M. 2014. La Malaria y el Dengue en la Historia de la Salud Pública Peruana, Lima: Universidad Nacional Mayor de San Marcos, pp. 1821-2011. DOI: https://doi.org/10.1371/journal.pntd.0002743

Rueda, L. M. 2004. Identification keys: Americas. In: Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Auckland: Magnolia Press, pp. 50-52. https://doi.org/10.11646/zootaxa.589.1.1 DOI: https://doi.org/10.11646/zootaxa.589.1.1

Strode, C., de Melo-Santos, M., Magalhães, T., Araújo, A., and Ayres, C. 2012. Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector, Aedes aegypti. PLoS ONE, 7: 2-6. https:// doi.org/10.1371/journal.pone.0039439 DOI: https://doi.org/10.1371/journal.pone.0039439

Valle, D., Montella, I., Ribeiro, R., Medeiros, P., MartinsJúnior, A., and Lima, J. 2006. Metodologia para quantificação de atividade de enzimas relacionadas com a resistência a inseticidas em Aedes aegypti. Fundação Oswaldo Cruz and Secretaria de Vigilância em Saúde, Ministério da Saúde. Avaliable in: https://www.gov. br/saude/pt/br/centrais-de-conteudo/publicacoes/ publicacoes-svs/dengue/manual_novo_protocolo_ dengue.pdf/ view

Vásquez, M. N. 2021. Boletín epidemiológico del Perú 2021: Brote de dengue en las provincias de Bagua y Utcubamba, departamento de Amazonas. Centro Nacional de Epidemiología, Prevención y Control de Enfermedades, Ministerio de Salud, Lima. Avaliable in: https://www.dge.gob.pe/epipublic/uploads/boletin/ boletin_20215.pdf

Vontas, J. G., Small, G. J., and Hemingway, J. 2001. Glutathione s-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J, 357: 67-71. https://doi.org/10.1042/ bj3570065 DOI: https://doi.org/10.1042/bj3570065

Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A., Marquine, M., and Raymond, M. 2004. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol, 13: 1-7. https://doi.org/10.1111/j.1365- 2583.2004.00452.x DOI: https://doi.org/10.1111/j.1365-2583.2004.00452.x

World Health Organization (WHO). 1981. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC/81.807. Available in: https://apps.who.int/iris/handle/10665/69615

World Health Organization. 2020. Enfermedades transmitidas por vectores. Avaliable in: https://www.who.int/es/ news-room/fact-sheets/detail/vector-borne-diseases

World Health Organization. 2022. Launch of the global arbovirus initiative. Avaliable in: https://www.who.int/ news-room/events/detail/2022/03/31/default-calendar/ global-arbovirus-initiative

Yang, F., Schildhauer, S., Billeter, S. A., Yoshimizu M. H., Payne, R., Pakingan, M. J., Metzger, M. E., Liebman, K. A., Hu, R., Kramer, V., and Padgett, K. A. 2020b. Insecticide resistance status of Aedes aegypti (Diptera: Culicidae) in California by biochemical assays. J Med Entomol, 57: 1178-1182. https://doi.org/10.1093/jme/ tjaa031 DOI: https://doi.org/10.1093/jme/tjaa031