Compatibility of insecticides with Metarhizium brunneum (Petch) and Beauveria bassiana (Bals.) for bio-intensive management of pink mealybug, Maconellicoccus hirsutus (Green) in grapes


Affiliations

  • ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India

Abstract

Grape (Vitis vinifera Linnaeus) is a high-value crop and important as a valuable export commodity for India. Pink mealybug, Maconellicoccus hirsutus (Green) is one of the most important pests infesting grapes. Two entomopathogenic fungi were isolated from the field infected insects and were identified as Metarhizium brunneum (Petch) and Beauveria bassiana (Bals.). The pathogenicity study showed that both the fungi were capable of infecting M. hirsutus. LC50 values 1.4 × 106 and 1.0 × 107 conidia per ml was recorded for M. brunneum and B. bassiana, respectively. Evaluation of compatibility of these fungi with insecticides is important to develop bio-intensive management strategy for mealybugs. The compatibility of seven insecticides (emamectin benzoate, tolfenpyrad, imidacloprid, clothianidin, buprofezin, fipronil, spirotetramat) with these entomopathogens was evaluated under laboratory conditions. Compatibility studies based on sporulation, germination and vegetative growth of fungi showed that imidacloprid and emamectin benzoate were most compatible and tolfenpyrad and spirotetramat were highly incompatible with both the entomopathogens.


Keywords

Bioassay, compatibility, entomopathogenic fungus, insecticide, mealybug

Subject Discipline

Entomology

Full Text:

References

Abbott WS. 1925. A method for computing the effectiveness of an insecticide. J Econ Entomol. 18: 265-267. https:// doi.org/10.1093/jee/18.2.265a

Akbar S, Freed S, Hameed A, Gul HT, Akmal M, Malik MN, Khan MB. 2012. Compatibility of Metarhizium anisopliae with different insecticides and fungicides. Afr J Microbiol Res. 6: 3956-3962.

Alves SB, Moino A Jr., Almeida JEM.1998. Produtosfitossanitários e entomopatógenos, pp. 217238. In: Alves SB (Ed.) Controle microbiano de insetos. São Paulo, Fealq. 1163 pp.

Amala U, Chinniah C, Indu S, Muthukrishnan N, Muthiah C. 2014. Bio-efficacy and lethal reproductive effects of three entomopathogenic fungi against pink mealybug, Maconellicoccus hirsutus (Green) infesting grapes. Green Farming 5: 697-700.

Ambethgar V, Swamiappan M, Rabindra RJ, Rabindran R. 2009. Biological compatibility of Beauveria bassiana (Balsamo) Vuillemin isolate with different insecticides and neem formulations commonly used in rice pest management. J Biol Control 23: 11-15.

Anderson TE, Roberts DW. 1983. Compatibility of Beauveria bassiana isolate with insecticide formulations used in Colorado potato beetle (Coleoptera: Chrysomelidae) control. J Econ Entomol. 76: 1437-1441. https://doi.org/10.1093/jee/76.6.1437

Alizadeh A, Samih MA, Khezri M, Saberi R. 2007. Compatibility of Beauveria bassiana (Bals.) Vuill. with several pesticides.Int J Agriic Biol. 9: 31-34.

Behie SW, Jones SJ, Bidochka MJ. 2015. Plant tissue localization of the endophytic insect pathogenic fungi Beauveria and Metarhizium. Fungal Ecol. 13: 112-119. https://doi.org/10.1016/j.funeco.2014.08.001

Bischoff JF, Rehner SA, Humber RA.2009. A multilocus phylogeny of the Metarhizium anisopliae lineage.

Mycologia 101: 512-530. https://doi.org/10.3852/07-202 PMid:19623931

Boucias DG, Pendland JC, Latge JP. 1988. Nonspecific factors involved in attachment of entomopathogenic deuteromycetes to host insect cuticle. Appl Environ Microbiol. 54: 1795-1805. PMid:16347689 PMCid:PMC202748

Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. 2011. The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc London Ser B. 366: 1987-1998. https://doi.org/10.1098/rstb.2010.0390 PMid:21624919 PMCid:PMC3130386

Chartier Fitzgerald V, Hill MP, Moore SD, Dames JF. 2016. Screening of entomopathogenic fungi against citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae). Afr Entomol. 24: 343-351. https://doi.org/10.4001/003.024.0343

Depieri RA, Martinez SS, Ayres O, Menezes JR. 2005. Compatibility of the fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves and the emulsible oil. Neotrop Entomol. 34: 601-606. https://doi.org/10.1590/S1519-566X2005000400010

Dorworth CE. 1997. Two models for the development of fungal biological control agents as instruments of ecological management, pp. 211-224. In: Chapela IH and Palm ME (Eds.). Mycology and sustainable development: expanding concepts, vanishing borders. Parkway, Boone, NC, USA.

Faraji S, Shadmehri AD, Mehrvar A. 2016. Compatibility of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae with some pesticides. J Entomol Soc Iran 36: 137-146.

Finney DJ. 1971. Probit Analysis. 3rd ed. Cambridge University Press, NewY ork, N.Y. 333 pp.

FRAC. 2018. FRAC Code List 2018: Fungicides sorted by mode of action(including FRAC Code numbering). Fungicicide Resistance Action Committee (FRAC). Available from: http://www.phi-base.org/images/fracCodeList.pdf

Ghini R, Kimati H. 2000. Resistência de fungos a fungicidas. Jaguariúna, EMBRAPA Meio Ambiente, 78p.

PMCid:PMC1729535

Greenfield M, Jimenez MIG, Ortiz V, Vega FE, Kramer M, Parsa S. 2016. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol Control 95: 40-48. https://doi.org/10.1016/j.biocontrol.2016.01.002 PMid:27103778 PMCid:PMC4825668

Hatting J, Wraight S, Miller RM. 2004. Efficacy of Beauveria bassiana (Hyphomycetes) for control of Russian wheat aphid (Homoptera: Aphididae) on resistant wheat under field conditions. Biocontrol Sci Tech. 144: 459–473. https://doi.org/10.1080/09583150 410001683501

IRAC. 2018. IRAC Mode of Action Classification Scheme. Issued, May 2018. Version 8.4. Insecticide Resistance Action Committee (IRAC) International MoA Working Group. Available from: https://www.irac-online.org/ modes-of-action/

Jaber S, Mercier A, Knio K, Brun S, Kambris Z. 2016. Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Parasites Vectors 9: 491. https://doi.org/10.1186/s13071-016-1763-3 PMid:27595597 PMCid:PMC5012000

James RR, Elzen GW. 2001. Antagonism between Beauveria bassiana and imidacloprid when combined for Bemisia argentifolii (Homoptera: Aleyrodidae) control. J Econ Entomol. 94: 357-361. https://doi.org/10.1603/0022-0493-94.2.357

Jin SF, Feng MG, Ying SH, Mu WJ, Chen JQ. 2011. Evaluation of alternative rice planthopper control by the combined action of oil formulated Metarhizium anisopliae and low-rate Buprofezin. Pest Manag Sci. 67: 36-43. https://doi.org/10.1002/ps.2026 PMid:20949549

Khorasiya SG, Raghavani KL, Bharadiya AM, Bhut JB. 2018. Compatibility of Beauveria bassiana with different insecticides. Int J Chem Stud. 6: 556-558.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16: 111-120.

https://doi.org/10.1007/BF01731581 PMid:7463489

Midthassel A, Leather SR, Wright DJ. 2016. Compatibility of Amblyseius swirskii with Beauveria bassiana: two potentially complimentary biocontrol agents. Bio Control 61: 437. https://doi.org/10.1007/s10526-016-9718-3

Moino Jr. A, Alves SB. 1998. Efeito de Imidacloprid e Fipronil sobre Beauveria bassiana (Bals.) Vuill. E Metarhizium anisopliae (Metsch.) Sorok. e no comportamento de limpeza de Heterotermes tenuis (Hagen). Annu Soc Entomol Brasil 27: 611-619. https://doi.org/10.1590/S0301-80591998000400014

Neves PMOJ, Hirose E, Tchujo PT, Moino A Jr. 2001. Compatibility of entomopathogenic fungi with neonicotinoid insecticides. Neotrop Entomol. 30: 263-268.

https://doi.org/10.1590/S1519-566X2001000200009

Niassy S, Maniania NK, Subramanian S, Gitonga ML, Maranga R, Obonyo AB, Ekesi S. 2012. Compatibility of Metarhizium anisopliae isolate ICIPE 69 with agrochemicals used in French bean production. Int J Pest Manage. 58: 131-137. https://doi.org/10.1080/096 70874.2012.669078

Orr D. 2009. Biological control and integrated pest management, pp. 207-239. In: Peshin R, Dhawan AK (Eds.). Integrated pest management: innovation development process, Springer Science & Business Media, Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-89923_9

Pachamuthe P, Kamble ST, Yuen GY. 1999. Virulence of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) strains ESC-1 to the German cockroach (Dictyoptera: Blattellidae) and its compatibility with insecticides. J Econ Entomol. 92: 340-346. https://doi.org/10.1093/jee/92.2.340

Paula R, Carolino AT, Paula CO, Samuels RI. 2011. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasites Vectors 4: 8. https://doi.org/10.1186/1756-3305-4-8 PMid:21266078 PMCid:PMC3037915

Pelizza SA, Scorsetti AC. 2015. Compatibility between entomopathogenic fungi and biorational insecticides in toxicity against Ronderosia bergi under laboratory conditions. BioControl 60: 81-91. https://doi.org/10.1007/ s10526-014-9606-7

Russell CW, Ugine TA, Hajek AE. 2010. Interactions between imidacloprid and Metarhizium brunneum on adult Asian longhorned beetles Anoplophora glabripennis (Motschulsky. (Coleoptera, Cerambycidae). J Invertebr Pathol. 105: 305-311. https://doi.org/10.1016/j.jip.2010.08.009 PMid:20807541

Sánchez–Rodríguez AR, del Campillo MC, Quesada–Moraga E. 2015. Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Sci Hortic. 197: 193-202. https://doi.org/10.1016/j.scienta.2015.09.029

Sandhu SS, Sharma AK, Beniwal V, Goel G, Batra P, Kumar A, Jaglan S, Sharma AK, Malhotra S. 2012. Mycobiocontrol of insect pests: Factors involved, mechanism, and regulation. J Pathogens 126819: 1-10.

Sawant IS, Wadkar PN, Ghule SB, Rajguru YR, Salunkhe VP, Sawant SD. 2017. Enhanced biological control of powdery mildew in vineyards by integrating a strain of Trichoderma afroharzianum with sulphur. BioControl. 114: 133-143.

Silva RA, Quintela ED, Mascarina GM, Barrigossi JAF, Liao LM. 2013. Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhizium anisopliae. Sci Agri. 70: 152-160. https:// doi.org/10.1590/S0103-90162013000300003

St. Leger RJ, Bidochka MJ, Roberts DW. 1994. Germination triggers of Metarhizium anisopliae conidia are related to host species. Microbiology 140: 1651–1660. https://doi.org/10.1099/13500872-140-7-1651

Tajick Ghanbary MA, Asgharzadeh A, Hadizadeh AR and Mohammadi Sharif MA. 2009. Quick method for Metarhizium anisopliae isolation from cultural soils. Am J Agr Biol Sci. 4: 152-155. https://doi.org/10.3844/ ajabssp.2009.152.155

Thungrabeab M, Tongma S.2007. Effect of entomopathogenic fungi, Beauveria bassiana (Balsam) and Metarhizium anisopliae (Metsch) on non-target insects. KMITL Sci Tech J. 7: 8-12.

Tiago PV, de Oliveira NT, de Luna EÁ, Lima A. 2014. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects. Cienc Rural 44: 645-651. https://doi.org/10.1590/S010384782014000400012

Wang CS, Skrobek A, Butt TM. 2004. Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol. 85: 168-174. https://doi.org/10.1016/j.jip.2004.02.008 PMid:15109899

Yadav DS, Amala U. 2013. Insect and mite pest management, pp. 44-51. In: Adsule PG, Yadav DS, Upadhayay A, Sharma AK and Satisha J (Eds.). Good agricultural practices for production of quality table grapes, ICAR-National Research Centre for Grapes, Pune, Maharashtra, India.


Refbacks

  • There are currently no refbacks.