

Research Note

New record of *Nesidiocoris tenuis* (Reuter) (Hemiptera: Miridae) associated with *Bemisia tabaci* Gennadius (Hemiptera: Aleyrodidae) on tomato from Maharashtra, India

OMKAR GAVKARE* and P. L. SHARMA

Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan- 173 230, Himachal Pradesh, India *Corresponding author: E-mail: Omkargavkare@yahoo.com

ABSTRACT: *Nesidiocoris tenuis* Reuter (Hemiptera: Miridae) associated with *Bemisia tabaci* Gennadius on tomato is recorded for the first time from Maharashtra, India. A minor to moderate level of the predator population was observed during the survey.

KEY WORDS: Nesiodiocoris tenuis, Bemisia tabaci, tomato

(Article chronicle: Received: 19-11-2013; Revised: 10-4-2014; Accepted: 15-04-2014)

Bemisia tabaci Gennadius is considered as one of the most harmful pest of tomato, besides it's direct damage on the plant, it appears to be a vector of plant viruses (Gerling *et al.*, 2001; Calvo, 2009). *Nesidiocoris tenuis* Reuter (Hemiptera: Miridae) is a polyphagous predator widely distributed in the tropical and subtropical areas. This species is known to be a predator of different species of whiteflies and also other insect pests (Sanchez and Lacasa, 2008; Calvo, *et al.*, 2009). *Nesiodiocoris tenuis* naturally colonizes tomato crop and can substantially contribute to the control of whiteflies (Sanchez, 2008). However, in the absence of prey, it can turn phytophagous is reported as a pest on sesame (Ahirwar *et al.*, 2009), tobacco (Patel, 1980), bottle gourd, tomatoes and cucurbits (Patel, 1980; Reddy and Kumar, 2004).

Nesiodiocoris was recorded for the first time predating on *B. tabaci* in Maharashtra, India. In the present study, a survey was carried out during October-November 2013, to study population density of predator and prey in Latur, Killari, Renapur, Chakur, Vishnupuri and Nanded areas of Maharashtra. The data was collected counting the whitefly adults and *N. tenius* on randomly chosen three leaves, each from upper, middle and lower canopy of ten randomly selected plants. (Sangha *et al.*, 1995; Sood, 2002)

Analysis of the collected data showed that the mean population density of *B. tabaci* on tomato was 14, 16, 12, 10, 2.07 and 3.7 per ten plants in Latur, Killari, Renapur, Chakur, Vishnupuri and Nanded areas respectively, while that of *N. tenius* was 16, 21, 17, 12, 5, 6 bugs per 10 plants in respective locations (Fig.1).

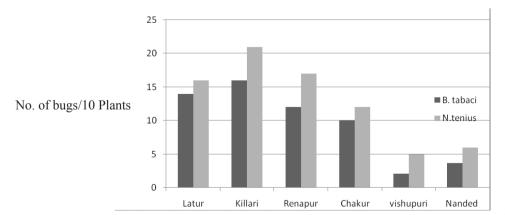


Fig. 1. Density of Nesiodiocoris tenuis and Bemisia tabaci during November 2013

New record of Nesidiocoris tenuis associated with Bemisia tabaci

Nesiodiocoris tenuis can be a promising candidate for the biological control of *B. tabaci* in green houses and open field conditions in India. This predator has been reported to control whiteflies effectively in the greenhouse in Spain (Calvo *et al.*, 2009; Gonzatez-Cabreta *et al.*, 2011). In Spain, the *N. tenuis* was released on tomato plant nurseries to control whiteflies in more than 3000 ha of commercial greenhouses during the tomato growing season of 2011 (Urbaneja *et al.*, 2012). The present report is an important piece of information in developing a bio-intensive strategy for the management of the *B. tabaci*. However, further studies are required to investigate its predatory potential, effective predator: prey ratio and mass production techniques in India.

ACKNOWLEDGEMENT

We would like to thank to Dr George Japoshvili, from Institute of Entomology, Agricultural University of Georgia, Tbilisi, for his valuable help to improve manuscript.

REFERENCES

- Ahirwar RM, Banerjee S, Gupta MP. 2009. Seasonal incidence of insect pests of sesame in relation to abiotic factors. *Annals Pl Prot Sci.* **17(2)**: 351-356.
- Calvo J, Blockmans K, Stansly PA, Urbaneja A. 2009. Predation by *Nesidiocoris tenuis* on *Bemisia tabaci* and injury to tomato. *BioControl* **54**: 237-246.
- Gerling D, Alomar O, Arno J. 2001. Biological control of *Bemisia tabaci* using predators and parasitoids. *Crop Prot.* **20**: 779-799
- Gonzalez-Cabrera J, Molla' O, Monto'n H, Urbaneja A 2011. Efficacy of *Bacillus thuringiensis* (Berliner) in

controlling the tomato borer, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae). *BioControl* **56**: 71-80.

- Patel NG. 1980. The bionomics and control measures of tobacco bug, *Nesidiocoris tenuis* Reuter (Miridae:Hemiptera). *Gujarat Agric Uni Res J.* **5(2)**: 60
- Reddy NA, Kumar A. 2004. Studies on the seasonal incidence of insect pests of tomato in Karnataka. *Pest Mgmt Hortic Ecosys.* **10(2)**:113-121
- Sanchez JA. 2009. Density thresholds for *Nesidiocoris tenuis* (Heteroptera: Miridae) in tomato crops. *Biol Control* **51**: 493-498.
- Sanchez JA, Lacasa A. 2008. Impact of the zoophytophagous plant bug *Nesidiocoris tenuis* (Heteroptera: Miridae) on tomato yield. *J Econ Entomol.* 101: 1864-1870.
- Sangha KS, Singh J, Mahal MS, Dhaliwal ZS. 1995. Sampling plan for estimating population of *Bemisia* tabaci (Gennadius) on American cotton. *Pest Mgmt Econ Zool.* 3(1): 7-11.
- Sood S, Sood AK. 2002. Incidence and record of host plants of greenhouse whitefly, *Trialeurodes vaporari*orum (Westwood) from Himachal Pradesh. *Pest Mgmt Econ Zool.* 10(1): 81-86.
- Urbaneja A, Gonzalez-Cabrera J, Arno J, Garbarra R. 2012.
 Prospects for the biological control of *Tuta absoluta* in tomatoes of the mediteranean basin. *Pest Mgmt Sci.* 68: doi 10.1002/ps.3344