Anti-Lipase and Antioxidant Activities of the Selected Plant Materials

Jump To References Section

Authors

  • P.G. Department of Home Science, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat ,IN
  • P.G. Department of Home Science, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat ,IN

DOI:

https://doi.org/10.21048/IJND.2023.60.3.33246

Keywords:

Anti - lipase activity, antioxidant activity, mango leaves, guava leaves, moringa leaves, turmeric rhizomes, ginger rhizomes, mango-ginger rhizomes

Abstract

Pancreatic lipase plays an important role in the efficient digestion of triglycerides. Its action on lipids produces fatty acids, accumulating in excess into various tissues leading to dyslipidaemia and associated co-morbidities. Thus, inhibition of pancreatic lipase is one of the preferable ways to prevent such conditions. The present study is aimed to evaluate the anti-lipase and antioxidant activities of the leaves of Magnifera indica L. (mango), Psidium guajava L. (guava) and Moringa olifera L. (moringa), and fresh rhizomes of Zingiber officinale R. (ginger), Curcuma longa L. (turmeric), and Curcuma amada R. (mango ginger). The selected samples were dehydrated, powdered, and extracted using absolute ethanol. The extracts were analysed for total phenols, flavonoids, DPPH radical scavenging activity and anti-lipase activity. Among the selected leaves, mango leaves had the highest total phenolic content (6300 mg GAE /100 g), total flavonoid content (6930 mg RE /100 g) and highest DPPH radical scavenging activity (14497.3 mgTE /100 g). The highest lipase inhibition (89.07%) was observed in guava leaves. In rhizomes, turmeric contained the highest total phenolic content (6570 mg GAE /100 g) and flavonoid content (14760 mg RE /100 g). Mango ginger possessed the highest DPPH radical scavenging activity of 9038.7 mg TE /100 g and lipase inhibition of 44.83%. The study concludes that guava leaves and mango ginger possess the highest anti-lipase activity among the selected leaves and rhizomes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2023-09-01

How to Cite

Khatlawala, V., & Roghelia, V. (2023). Anti-Lipase and Antioxidant Activities of the Selected Plant Materials. The Indian Journal of Nutrition and Dietetics, 60(3), 389–397. https://doi.org/10.21048/IJND.2023.60.3.33246

Issue

Section

Original Articles

 

References

Younis, N., Abu-Mallouh, S., Almasri, I., Issa, A. and Bustanji, Y. Pancreatic lipase inhibition by edible plants used in three middle east countries: A mini-review. Jordan J. Pharmac. Sci., 2021, 14, 179-188.

Pirahanchi, Y. and Sharma, S. Biochemistry, Lipase. In Stat Pearls. Stat Pearls Publishing, 2020.

Tiietz, N.W. and Shuey, D.F. Lipase in serum – the elusive enzyme: An overview. Clin. Chem., 1993, 39, 746- 756. DOI: https://doi.org/10.1093/clinchem/39.5.746

Mukherjee, A.K. Hydrophobic-hydrophilic interaction in lipase catalytic triad and possibility of a cofactor mediated catalysis. Int. J. Agricul. Fd. Sci., 2014, 4, 84-89.

Kang, J.G. and Park, C.Y. Anti-obesity drugs: A review about their effects and safety. Diabetes. Metabol. J., 2012, 36, 13. DOI: https://doi.org/10.4093/dmj.2012.36.1.13

Veeramachaneni, G.K., Raj, K.K., Chalasani, L.M., Annamraju, S.K., Bondili, JS. and Talluri, V.R. Shape based virtual screening and molecular docking towards designing novel pancreatic lipase inhibitors. Bioinform., 2015, 11, 535.

Birari, R.B. and Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discovery Today, 2007, 12, 879-889. DOI: https://doi.org/10.1016/j.drudis.2007.07.024

Ahn, J.H., Liu, Q., Lee, C., Ahn, M.J., Yoo, H.S., Hwang, B.Y. and Lee, M.K. A new pancreatic lipase inhibitor from Broussonetia kanzinoki. Bioorg. Med. Chem. Letters, 2012, 22, 2760-2763. DOI: https://doi.org/10.1016/j.bmcl.2012.02.088

Kim, G.N., Shin, M.R., Shin, S.H., Lee, A.R., Lee, J.Y., Seo, B.I., Kim, M.Y., Kim, T.H., Noh, J.S., Rhee, M.H. and Roh, S.S. Study of anti-obesity effect through inhibition of pancreatic lipase activity of diospyros kaki fruit and Citrus unshiu peel. Bio. Med. Res. Int., 2016, 2016, 1-7. DOI: https://doi.org/10.1155/2016/1723042

Yadav, R.P., Shahu, R.R., Mhatre, S., Rathod, P. and Kulkarni, C. Pancreatic lipase inhibitors from plant sources for possible use as anti-obesity drugs. MGM J. Med. Sci., 2017, 4, 177-184. DOI: https://doi.org/10.5005/jp-journals-10036-1166

Bialecka-Florjanczyk, E., Fabiszewska, A.U., Krzyczkowska, J. and Kurylowicz, A. Synthetic and natural lipase inhibitors. Mini Rev. Med. Chem., 2018, 18, 672-683. DOI: https://doi.org/10.2174/1389557516666160630123356

Singh, G., Suresh, S., Bayineni, V.K. and Kadeppagari, R.K. Lipase inhibitors from plants and their medical applications. Int. J. Pharm. Pharmac. Sci., 2015, 7, 1-5.

Lunagariya, N.A., Patel, N.K., Jagtap, S.C. and Bhutani, K.K. Inhibitors of pancreatic lipase: state of the art and clinical perspectives. EXCLI J., 2014, 13, 897.

Simao, A.A., Marques, T.R., Marcussi, S. and Correa, A.D. Aqueous extract of Psidium guajava leaves: Phenolic compounds and inhibitory potential on digestive enzymes. Anais da Academia Brasileira de Ciências, 2017, 89, 2155-2165. DOI: https://doi.org/10.1590/0001-3765201720160067

Yoshioka, Y., Yoshimura, N., Matsumura, S., Wada, H., Hoshino, M., Makino, S. and Morimoto, M. α-Glucosidase and pancreatic lipase inhibitory activities of diterpenes from Indian mango ginger (Curcuma amada Roxb.) and its derivatives. Molec., 2019, 24, 4071. DOI: https://doi.org/10.3390/molecules24224071

Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymol., 1999, 299, 152-178. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1

Zhischen, J., Mengcheng, T. and Jianming, W. Determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Fd. Chem., 1999, 64, 555-559. DOI: https://doi.org/10.1016/S0308-8146(98)00102-2

Brand-Williams, W., Cuvelier, M.E. and Berset, C.L. W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Fd. Sci. Technol., 1995, 28, 25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Bustanji, Y., Mohammad, M., Hudaib, M., Tawaha, K., Al-Masri, I. M., AlKhatib, H.S., Issa, A. and Alali, F.Q. Screening of some medicinal plants for their pancreatic lipase inhibitory potential. Jordan J. Pharmac. Sci., 2011, 4, 81-88.

Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R. and Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 2019, 8, 96. DOI: https://doi.org/10.3390/plants8040096

Mutha, R.E., Tatiya, A.U. and Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future J. Pharmacy. Sci., 2021, 7, 1-13. DOI: https://doi.org/10.1186/s43094-020-00161-8

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P. and Chang, C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molec., 2022, 27, 1326. DOI: https://doi.org/10.3390/molecules27041326

Sosnowska, D., Kajszczak, D. and Podsędek, A. The effect of different growth stages of black chokeberry fruits on phytonutrients, anti-lipase activity, and antioxidant capacity. Molec., 2022, 27, 8031. DOI: https://doi.org/10.3390/molecules27228031

Moreno, D.A., Ripoll, C., Ilic, N., Poulev, A., Aubin, C. and Raskin, I. Inhibition of lipid metabolic enzymes using Mangifera indica extracts. J. Fd. Agricul. Environ., 2006, 4, 21.

Itoh, K., Murata, K., Nakagaki, Y., Shimizu, A., Takata, Y., Shimizu, K., and Matsuda, H. A pancreatic lipase inhibitory activity by mango (Mangifera indica) leaf methanolic extract. J. Plant Stud., 2016, 5. DOI: https://doi.org/10.5539/jps.v5n2p72

Batubara, I., Mitsunaga, T. and Ohashi, H. Screening anti acne potency of Indonesian medicinal plants: Antibacterial, lipase inhibition, and antioxidant activities. J. Wood Sci., 2009, 55, 230 - 235. DOI: https://doi.org/10.1007/s10086-008-1021-1

Swamy, G.M. and Meriga, B. Therapeutic effect of Moringa oleifera leaf extracts on oxidative stress and key metabolic enzymes related to obesity. Int. J. Pharmac. Sci. Res., 2020, 11, 1949-1957.

Yuan, L., Gu, X., Yin, Z. and Kang, W. Antioxidant activities in vitro and hepatoprotective effects of nelumbo nucifera leaves in vivo. Afr. J. Tradit. Complem. Altern. Med., 2014, 11, 85-91. DOI: https://doi.org/10.4314/ajtcam.v11i3.12

Singh, S., Singh, R., Banerjee, S., Negi, A.S. and Shanker, K. Determination of anti-tubercular agent in mango ginger (Curcuma amada Roxb.) by reverse phase HPLC-PDA-MS. Fd. Chem., 2012, 131, 375-379. DOI: https://doi.org/10.1016/j.foodchem.2011.08.054

Bae, J.S. and Kim, T.H. Pancreatic lipase inhibitory and antioxidant activities of Zingiber officinale extracts. Korean J. Fd. Preserv., 2011, 18, 390-396. DOI: https://doi.org/10.11002/kjfp.2011.18.3.390

Quiroga, P.R., Grosso, N.R., Lante, A., Lomolino, G., Zygadlo, J.A. and Nepote, V. Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia turbinata essential oils. Int. J. Fd. Sci. Technol., 2013, 48, 642-649. DOI: https://doi.org/10.1111/ijfs.12011

Jamous, R.M., Absu-Zaitoun, S.Y., Akkawi, R.J. and Ali-Shtayeh, M.S. Antiobesity and antioxidant potentials of selected palestinian medicinal plants. Evidence-Based Complemen. Altern. Med., 2018,1-21. DOI: https://doi.org/10.1155/2018/8426752