Systematic Review: Vulnerability of Metabolic Syndrome in COVID-19

Jump To References Section

Authors

  • Department of Dietetics and Applied Nutrition, Amity University Haryana, Gurgaon - 122 412 ,IN ORCID logo http://orcid.org/0000-0002-0445-7089
  • Department of Food Science and Nutrition, Banasthali Vidyapith, Rajasthan - 302 001 ,IN

DOI:

https://doi.org/10.21048/IJND.2021.58.3.27233

Keywords:

SARS-CoV-2, COVID-19, metabolic syndrome, inflammation, pandemic, infection

Abstract

SARS-CoV-2 infection has become a widely spread disease around the world causing rapid hospitalization and death, especially in people with metabolic syndrome. There is very limited literature that goes to present the clinical implications and management of metabolic syndrome in this pandemic. Hence an attempt has been made towards meeting this end. A literature review has been done extracting articles from scopus database following PRISMA guidelines. The manuscripts were studied to identify articles that report metabolic syndrome and its components in COVID-19 infection. A total of 25 manuscripts were included in this systematic review. These studies report systematic inflammation and organ damage in metabolic syndrome that has up regulated SARS-CoV-2 infection. Various treatment strategies have also been suggested and hypothesized. The results of this analysis indicate that patients suffering from metabolic syndrome are vulnerable to COVID-19 owing a sequence of complications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2021-09-07

How to Cite

Dhawan, D., & Sharma, S. (2021). Systematic Review: Vulnerability of Metabolic Syndrome in COVID-19. The Indian Journal of Nutrition and Dietetics, 58(3), 419–431. https://doi.org/10.21048/IJND.2021.58.3.27233

Issue

Section

Review Articles
Received 2021-03-03
Accepted 2021-05-29
Published 2021-09-07

 

References

Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., Fruchart, J. C., James, W. P., Loria, C. M., Smith, S. C., Jr, International Diabetes Federation Task Force on Epidemiology and Prevention, National Heart, Lung and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, & amp; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circul., 2009, 120, 1640-1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644 DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.192644

Andersen, C.J., Murphy, K.E. And Fernandez, M.L. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr. (Bethesda, Md.)., 2016, 7, 66-75. https://doi.org/10.3945/an.115.010207 DOI: https://doi.org/10.3945/an.115.010207

Fantuzzi, G., Mazzone, T. Adipose Tissue and Adipokines in Health and Disease. Illustrated edn., Humana Press, Totowa, NJ, 2007. DOI: https://doi.org/10.1007/978-1-59745-370-7

Milner, J.J. and Beck, M.A. The impact of obesity on the immune response to infection. Proc. Nutr. Soc., 2012, 71, 298-306. https://doi.org/10.1017/S0029665112000158 DOI: https://doi.org/10.1017/S0029665112000158

Esfahani, M., Movahedian, A., Baranchi, M. and Goodarzi, M.T. Adiponectin: an adipokine with protective features against metabolic syndrome. Ira. J. Bas. Med. Sci., 2015, 18, 430-442.

Luo, Y. And Liu, M. Adiponectin: A versatile player of innate immunity. J. Molec. cell Biol., 2016, 8, 120-128. https://doi.org/10.1093/jmcb/mjw012 DOI: https://doi.org/10.1093/jmcb/mjw012

Wolf, A.M., Wolf, D., Rumpold, H., Enrich, B. And Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun., 2004, 323, 630-635. https://doi.org/10.1016/j.bbrc.2004.08.145 DOI: https://doi.org/10.1016/j.bbrc.2004.08.145

Kim, K.Y., Kim, J.K., Han, S.H., Lim, J.S., Kim, K.I., Cho, D.H., Lee, M.S., Lee, J.H., Yoon,D.Y., Yoon, S.R., Chung, J.W., Choi, I., Kim, E. and Yang, Y. Adiponectin is a negative regulator of NK cell cytotoxicity. J. Immunol. (Baltimore, Md. : 1950), 2006, 176, 5958-5964. https://doi.org/10.4049/jimmunol.176.10.5958 DOI: https://doi.org/10.4049/jimmunol.176.10.5958

Ziegler-Heitbrock, H.W., Wedel, A., Schraut, W., Ströbel, M., Wendelgass, P., Sternsdorf, T., Bäuerle, P.A., Haas, J.G. and Riethmüller, G. Tolerance to lipopolysaccharide involves mobilization of nuclear factor kappa B with predominance of p50 homodimers. J. Biolog. Chem., 1994, 269, 17001-17004. DOI: https://doi.org/10.1016/S0021-9258(17)32510-3

Gruzdeva, O., Borodkina, D., Uchasova, E., Dyleva, Y. and Barbarash, O. Leptin resistance: Underlying mechanisms and diagnosis. Diabetes, Metab. Synd. Obes., 2019, 12, 191-198. https://doi.org/10.2147/DMSO.S182406 DOI: https://doi.org/10.2147/DMSO.S182406

Lord, G.M., Matarese, G., Howard, J.K., Baker, R.J., Bloom, S.R. and Lechler, R.I. Leptin modulates the T-cell immune response and reverses starvation-induced immuno-suppression. Nature, 1998, 394, 897-901. https://doi.org/10.1038/29795 DOI: https://doi.org/10.1038/29795

Zarkesh-Esfahani, H., Pockley, G., Metcalfe, R. A., Bidlingmaier, M., Wu, Z., Ajami, A., Weetman, A.P., Strasburger, C.J. and Ross, R.J. High- dose leptin activates human leukocytes via receptor expression on monocytes. J. Immunol. (Baltimore, Md. : 1950)., 2001, 167, 4593-4599. https://doi.org/10.4049/jimmunol.167.8.4593 DOI: https://doi.org/10.4049/jimmunol.167.8.4593

Yang, H., Youm, Y.H., Vandanmagsar, B., Rood, J., Kumar, K.G., Butler, A.A. and Dixit, V.D. Obesity accelerates thymic aging. Blood, 2009, 114, 3803-3812. https://doi.org/10.1182/blood-2009-03-213595 DOI: https://doi.org/10.1182/blood-2009-03-213595

Barbu-Tudoran, L., Gavriliuc, O.I., Paunescu, V. and Mic, F.A. Accumulation of tissue macrophages and depletion of resident macrophages in the diabetic thymus in response to hyperglycemia-induced thymocyte apoptosis. J. Diabetes. Complic., 2013, 27, 114-122. https://doi.org/10.1016/j.jdiacomp.2012.10.007 DOI: https://doi.org/10.1016/j.jdiacomp.2012.10.007

Howard, J.K., Lord, G.M., Matarese, G., Vendetti, S., Ghatei, M.A., Ritter, M. A., Lechler, R.I. and Bloom, S.R. Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J. Clin. Invest., 1999, 104, 1051-1059. https://doi.org/10.1172/JCI6762 DOI: https://doi.org/10.1172/JCI6762

Bredella, M.A., Torriani, M., Ghomi, R.H., Thomas, B.J., Brick, D.J., Gerweck, A.V., Rosen, C. J., Klibanski, A. and Miller, K.K. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obes. (Silver Spring, Md.)., 2011, 19, 49-53. https://doi.org/10.1038/oby.2010.106 DOI: https://doi.org/10.1038/oby.2010.106

Wu, C.L., Diekman, B.O., Jain, D. and Guilak, F. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int. J. Obes., 2013, 37, 1079-1087. https://doi.org/10.1038/ijo.2012.171 DOI: https://doi.org/10.1038/ijo.2012.171

Hegde, V. and Dhurandhar, N.V. Microbes and obesity- inter relationship between infection, adipose tissue and the immune system. Clinical microbiology and infection: The official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2013, 19, 314-320. https://doi.org/10.1111/1469-0691.12157 DOI: https://doi.org/10.1111/1469-0691.12157

Wang, C., Seifert, R.A., Bowen-Pope, D.F., Kregel, K.C., Dunnwald, M. and Schatteman, G. C. Diabetes and aging alter bone marrow contributions to tissue maintenance. Int. J. Physiol. Pathophysiol. Pharmacol., 2009, 2, 20-28.

Hodgson, K., Morris, J., Bridson, T., Govan, B., Rush, C. and Ketheesan, N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunol., 2015, 144, 171-185. https://doi.org/10.1111/imm.12394 DOI: https://doi.org/10.1111/imm.12394

Khan, Y., Lalchandani, A., Gupta, A.C., Khadanga, S. and Kumar, S. Prevalence of metabolic syndrome crossing 40% in Northern India: Time to act fast before it runs out of proportions. J. Family Med. Primary Care., 2018, 7, 118-123. https://doi.org/10.4103/jfmpc.jfmpc_10_17 DOI: https://doi.org/10.4103/jfmpc.jfmpc_10_17

Sharma, A., Tiwari, S., Deb, M.K. and Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Age., 2020, 56, 106054. https://doi.org/10.1016/j.ijantimicag.2020.106054 DOI: https://doi.org/10.1016/j.ijantimicag.2020.106054

Ciotti, M., Angeletti, S., Minieri, M., Giovannetti, M., Benvenuto, D., Pascarella, S., Sagnelli, C., Bianchi, M., Bernardini, S. and Ciccozzi, M. COVID-19 Outbreak: An Overview. Chemothera., 2019, 64, 215-223. https://doi.org/10.1159/000507423 DOI: https://doi.org/10.1159/000507423

Ayres, J.S. A metabolic handbook for the COVID-19 pandemic. Nature Metabol., 2020, 2, 572-585. https://doi.org/10.1038/s42255-020-0237-2 DOI: https://doi.org/10.1038/s42255-020-0237-2

Bansal, R., Gubbi, S. and Muniyappa, R. Metabolic syndrome and COVID 19: Endocrine-immune-vascular interactions shapes clinical course. Endocrinol., 2020, 161, 112. https://doi.org/10.1210/endocr/bqaa112 DOI: https://doi.org/10.1210/endocr/bqaa112

Costa, F.F., Rosário, W.R., Ribeiro Farias, A.C., de Souza, R.G., Duarte Gondim, R.S. and Barroso, W.A. Metabolic syndrome and COVID- 19: An update on the associated comorbidities and proposed therapies. Diabetes Metabol. Synd., 2020, 14, 809-814. https://doi.org/10.1016/j.dsx.2020.06.016 DOI: https://doi.org/10.1016/j.dsx.2020.06.016

Mauvais-Jarvis F. Aging, male sex, obesity and metabolic inflammation create the perfect storm for COVID-19. Diabetes, 2020, 69, 1857-1863. https://doi.org/10.2337/dbi19-0023 DOI: https://doi.org/10.2337/dbi19-0023

Rokkam, V., Vegunta, R., Prudhvi, K., Vegunta, R., Kotagiri, R., Boregowda, U. and Kutti Sridharan, G. Quot: Weighing and quot; the risks and benefits - Thromboprophylaxis challenges in obese COVID-19 patients. Obes. Med., 2020, 19, 100284. https://doi.org/10.1016/j.obmed.2020.100284 DOI: https://doi.org/10.1016/j.obmed.2020.100284

AbdelMassih, A.F., Ye, J., Kamel, A., Mishriky, F., Ismail, H.A., Ragab, H.A., El Qadi, L., Malak, L., Abdu, M., El-Husseiny, M., Ashraf, M., Hafez, N., AlShehry, N., El-Husseiny, N., AbdelRaouf, N., Shebl, N., Hafez, N., Youssef, N., Afdal, P., Hozaien, R. and Fouda, R. A multicenter consensus: A role of furin in the endothelial tropism in obese patients with COVID-19 infection. Obes. Med., 2020, 19, 100281. https://doi.org/10.1016/j.obmed.2020.100281 DOI: https://doi.org/10.1016/j.obmed.2020.100281

Wang, S., Ma, P., Zhang, S., Song, S., Wang, Z., Ma, Y., Xu, J., Wu, F., Duan, L., Yin, Z., Luo, H., Xiong, N., Xu, M., Zeng, T. and Jin, Y. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: A multi-centre retrospective study. Diabetol., 2020, 63, 2102-2111. https://doi.org/10.1007/s00125-020-05209-1 DOI: https://doi.org/10.1007/s00125-020-05209-1

Smith, M., Honce, R. and Schultz-Cherry, S. Metabolic syndrome and viral pathogenesis: Lessons from influenza and coronaviruses. J. Virol., 2020, 94, e00665-20. https://doi.org/10.1 128/JVI.00665-20 DOI: https://doi.org/10.1128/JVI.00665-20

Roy, D., Ramasamy, R. and Schmidt, A.M. Journey to a receptor for advanced glycation end products connection in severe acute respiratory syndrome coronavirus 2 infection: With stops along the way in the lung, heart, blood vessels, and adipose tissue. Arteriosclerosis, Thrombosis. Vascular Biol., 2021, 41, 614-627. https://doi.org/10.1161/ATVBAHA.120.315527 DOI: https://doi.org/10.1161/ATVBAHA.120.315527

Petersen, A., Bressem, K., Albrecht, J., ThieíŸ, H.M., Vahldiek, J., Hamm, B., Makowski, M.R., Niehues, A., Niehues, S.M. and Adams, L.C. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabol. Clin. Experiment., 2020, 110, 154317. https://doi.org/10.1016/j.metabol.2020.154317 DOI: https://doi.org/10.1016/j.metabol.2020.154317

Kornilov, S.A., Lucas, I., Jade, K., Dai, C.L., Lovejoy, J.C. and Magis, A.T. Plasma levels of soluble ACE2are associated with sex, Metabolic Syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19. Critical care (London, England)., 2020, 24, 452. https://doi.org/10.1186/s13054-020-03141-9 DOI: https://doi.org/10.1186/s13054-020-03141-9

Hooper P.L. COVID-19 and heme oxygenase: Novel insight into the disease and potential therapies. Cell Stress Chaperones, 2020, 25, 707-710. https://doi.org/10.1007/s12192-020-01126-9 DOI: https://doi.org/10.1007/s12192-020-01126-9

Uzzan, M., Corcos, O., Martin, J.C., Treton, X. and Bouhnik, Y. Why is SARS-CoV-2 infection more severe in obese men? The gut lymphatics - Lung axis hypothesis. Med. Hypothe., 2020, 144, 110023. https://doi.org/10.1016/j.mehy.2020.110023 DOI: https://doi.org/10.1016/j.mehy.2020.110023

Hariyanto, T.I. and Kurniawan, A. Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metabol. Synd., 2020, 14, 1463-1465. https://doi.org/10.1016/j.dsx.2020.07.054 DOI: https://doi.org/10.1016/j.dsx.2020.07.054

Chiappetta, S., Sharma, A.M., Bottino, V. and Stier, C. COVID-19 and the role of chronic inflammation in patients with obesity. Int. J. Obes., 2020, 44, 1790-1792. https://doi.org/10.1038/s41366-020-0597-4 DOI: https://doi.org/10.1038/s41366-020-0597-4

Bornstein, S.R., Dalan, R., Hopkins, D., Mingrone, G. and Boehm, B.O. Endocrine and metabolic link to coronavirus infection. Nature Rev. Endocrinol., 2020, 16, 297-298. https://doi.org/10.1038/s41574-020- 0353-9 DOI: https://doi.org/10.1038/s41574-020-0353-9

Yamasaki H. Blood nitrate and nitrite modulating nitric oxide bioavailability: Potential therapeutic functions in COVID-19. Nitric Oxide. Boil. Chem., 2020, 103, 29-30. https://doi.org/10.1016/j.niox.2020.07.005 DOI: https://doi.org/10.1016/j.niox.2020.07.005

Bertocchi, I., Foglietta, F., Collotta, D., Eva, C., Brancaleone, V., Thiemermann, C. and Collino, M. The hidden role of NLRP3 inflammasome in obesity-related COVID-19 exacerbations: Lessons for drug repurposing. Br. J. Pharmacol., 2020, 177, 4921-4930. https://doi.org/10.1111/bph.15229 DOI: https://doi.org/10.1111/bph.15229

Khunti, S., Khunti, N., Seidu, S. and Khunti, K. Therapeutic uncertainties in people with cardiometabolic diseases and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19). Diabetes Obes. Metabol., 2020, 22, 1942-1945. https://doi.org/10.1111/dom.14062 DOI: https://doi.org/10.1111/dom.14062

Saban-Ruiz, J. and Ly-Pen, D. COVID-19: a personalized cardiometabolic approach for reducing complications and costs, the role of aging beyond topics. J. Nutr. Heal. Agin., 2020, 24, 550-559. https://doi.org/10.1007/s12603-020-1385-5 DOI: https://doi.org/10.1007/s12603-020-1385-5

Demidowich, A.P., Levine, J.A., Apps, R., Cheung, F.K., Chen, J., Fantoni, G., CHI Consortium, Patel, T.P. and Yanovski, J.A. Colchicines effects on metabolic and inflammatory molecules in adults with obesity and metabolic syndrome: results from a pilot randomized controlled trial. Int. Journal of obes., 2020, 44, 1793-1799. https://doi.org/10.1038/s41366-020-0598-3 DOI: https://doi.org/10.1038/s41366-020-0598-3

Chocair, P.R., Neves, P.D.M.M., Pereira, L.V.B., Mohrbacher, S., Oliveira, E.S., Nardotto, L.L., Bales, A.M., Sato, V.A.H., Ferreira, B.M.C. and Cuvello Neto, A.L. Covid-19 and Metabolic Syndrome. Revista Da Associacao Medica Brasileira, 2020, 66, 871-875. https://doi.org/10.1590/1806-9282.66.7.871 DOI: https://doi.org/10.1590/1806-9282.66.7.871

Almerie, M.Q. and Kerrigan, D.D. The association between obesity and poor outcome after COVID-19 indicates a potential therapeutic role for montelukast. Med. Hypothe., 2020, 143, 109883. https://doi.org/10.1016/j.mehy.2020.109883 DOI: https://doi.org/10.1016/j.mehy.2020.109883

Torrinhas, R.S., Calder, P.C., Lemos, G.O. and Waitzberg, D.L. Parenteral fish oil: An adjuvant pharmacotherapy for coronavirus disease 2019?. Nutrition (Burbank, Los Angeles County, Calif.), 2021, 81, 110900. https://doi.org/10.1016/j.nut.2020.110900 DOI: https://doi.org/10.1016/j.nut.2020.110900

Singh V. Can vitamins, as epigenetic modifiers, enhance immunity in covid-19 patients with non-communicable disease?. Curr. Nutr. Rep., 2020, 9, 202-209. https://doi.org/10.1007/s13668-020-00330-4 DOI: https://doi.org/10.1007/s13668-020-00330-4

El-Missiry, M.A., El-Missiry, Z. and Othman, A.I. Melatonin is a potential adjuvant to improve clinical outcomes in individuals with obesity and diabetes with coexistence of Covid-19. Eur. J. Pharmacol., 2020, 882, 173329. https://doi.org/10.1016/j.ejphar.2020.173329 DOI: https://doi.org/10.1016/j.ejphar.2020.173329