An Overview of Dietary Approaches to Prevent the Development of Glaucoma

Jump To References Section

Authors

  • Department of Ophthalmology, Ram Manohar Lohia Hospital, New Delhi ,IN
  • Department of Ophthalmology, Ram Manohar Lohia Hospital, New Delhi ,IN
  • Department of Food and Nutrition, Institute of Home Economics, University of Delhi, New Delhi ,IN
  • Department of Biology, Institute of Home Economics, University of Delhi, New Delhi ,IN
  • Department of Physiology and Promotive Health, Institute of Home Economics, University of Delhi, New Delhi ,IN

DOI:

https://doi.org/10.21048/ijnd.2020.57.3.23638

Keywords:

Glaucoma, Intraocular Pressure, Glycosaminoglycan, Antioxidant, Melatonin.
Dietary Approaches for Glaucoma

Abstract

Glaucoma, the second-leading cause of blindness worldwide, silently and without warning can cause disabling vision loss that result from damage to the eye's optic nerve. Glaucoma is characterized by Increased Intraocular Pressure (IOP) in some but not all cases. Faulty glycosaminoglycan (GAG) synthesis or breakdown in the trabecular meshwork associated with aqueous outflow as well as compromised antioxidant defense systems have also been implicated. Researchers have found nutrient interventions may impact this vision-robbing glaucoma. Nutrients that can influence GAGs such as vitamin C and glucosamine sulfate may hold promise for glaucoma treatment. Vitamin C in high doses has also been found to lower IOP via its osmotic effect. Other nutrients holding some potential benefit for glaucoma include antioxidants, vitamins, minerals, caffeine, melatonin and herbs etc. Role of dietary fats and proteins in glaucoma is an emerging field of research with potential therapeutic benefits. Diabetics and persons without diabetes but at the higher levels of fasting glucose, fasting insulin and HbA1c may also be at greater risk of glaucoma suggesting that dietary sugars also play a role in development of glaucoma. Similarly, Mediterranean diet and Caloric restriction are safe, non-invasive and low-cost treatments which may be used as auxiliary measures for a long-term therapy of age-related eye diseases such as glaucoma. In this review, various modifiable nutrient factors, that may influence intraocular pressure and that have been studied in relation to the risk of developing glaucoma are discussed. This review also outlines future directions for research into the primary prevention of glaucoma.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-07-30

How to Cite

Kapur, P., Pathak, A., Gupta, S., Bhardwaj, M., & Suri, M. (2020). An Overview of Dietary Approaches to Prevent the Development of Glaucoma. The Indian Journal of Nutrition and Dietetics, 57(3), 341–361. https://doi.org/10.21048/ijnd.2020.57.3.23638

Issue

Section

Review Articles
Received 2019-04-30
Accepted 2020-06-17
Published 2020-07-30

 

References

Quigley, H.A. and Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol., 2006, 90, 262–267. DOI: https://doi.org/10.1136/bjo.2005.081224

Resnikoff, S., Pascolini, D., Etya'Ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G.P. and Mariotti, S.P. Global data on visual impairment in the year 2002. B. World Health Organ., 2004, 82, 844-51.

Weinreb, R. and Khaw, P. Primary open-angle glaucoma. Lancet, 2004, 363, 1711-1720. DOI: https://doi.org/10.1016/S0140-6736(04)16257-0

Foster, P.J., Buhrmann, R., Quigley, H.A. and Johnson, G.J. The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol., 2002, 86, 238-242. DOI: https://doi.org/10.1136/bjo.86.2.238

Tielsch, J.M., Katz, J., Singh, K., Quigley, H.A., Gottsch, J.D., Javitt, J. and Sommer, A. A population-based evaluation of glaucoma screening: The Baltimore Eye Survey. Am. J. Epidemiol., 1991, 134, 1102-1010. DOI: https://doi.org/10.1093/oxfordjournals.aje.a116013

Hall, A.J.H. Secondary glaucoma. Clin. Exp. Optom., 2000, 83.3, 190-194. DOI: https://doi.org/10.1111/j.1444-0938.2000.tb04914.x

Rhee, D.J., Spaeth, G.L., Myers, J.S., Steinmann, W.C., Augsburger, J.J., Shatz L.J., Terebuh, A.K., Ritner, J.A. and Katz, L.J. Prevalence of the use of complementary and alternative medicine for glaucoma. Ophthalmol., 2002, 109, 438-443. DOI: https://doi.org/10.1016/S0161-6420(01)01030-2

Wan, M., Daniel, S., Kassam, F., Mutti, G., Butty, Z., Kasner O., Trope, G.E. and Buys, Y.M. Survey of complementary and alternative medicine use in glaucoma patients. J. Glaucoma, 2012, 21, 79-82.

Pasquale, L. and Kang, J. Lifestyle, nutrition and glaucoma. J. Glaucoma, 2009, 18, 423-428. DOI: https://doi.org/10.1097/IJG.0b013e31818d3899

Kulkarni, P.S. and Srinivasan, B.D. Prostaglandins E3 and D3 lower intraocular pressure. Invest. Ophthalmol. Vis. Sci., 1985, 26, 1178-1182.

Mancino, M., Ohia, E. and Kulkarni, P. A comparative study between cod liver oil and liquid lard intake on intraocular pressure on rabbits. Prostaglandins Leukot. Essent. Fatty Acids, 1992, 45, 239-243. DOI: https://doi.org/10.1016/0952-3278(92)90120-8

Arkell, S.M., Lightman, D.A., Sommer, A., Taylor, H.R., Korshin, O.M. and Tielsch, J.M. The prevalence of glaucoma among Eskimos of northwest Alaska. Arch. Ophthalmol., 1987, 105, 482-485. DOI: https://doi.org/10.1001/archopht.1987.01060040052031

Renard, J.P., Rouland, J.F, Bron, A., Sellem, E., Nordmann, J.P., Baudouin, C., Denis, P., Villain, M., Chaine, G. and Colin, J. Nutritional, lifestyle and environmental factors in ocular hypertension and primary open angle glaucoma: an exploratory case control study. Acta Ophthalmol., 2013, 91, 505-513. DOI: https://doi.org/10.1111/j.1755-3768.2011.02356.x

Kris Etherton, P.M., Harris, W.S. and Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids and cardiovascular disease. Circula., 2002, 106, 2747-2757. DOI: https://doi.org/10.1161/01.CIR.0000038493.65177.94

Resch, H., Garhofer, G., Fuchsjager Mayrl, G., Hommer, A. and Schmetterer, L. Endothelial dysfunction in glaucoma. Acta Ophthalmol., 2009, 87, 4-12. DOI: https://doi.org/10.1111/j.1755-3768.2007.01167.x

Arterburn, L.M., Hall, E.B. and Oken, H. Distribution, interconversion and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr., 2006, 83, 1467S- 1476S. DOI: https://doi.org/10.1093/ajcn/83.6.1467S

Cunnane, S.C., Plourde, M., Pifferi, F., Begin, M., Feart, C. and Barberger Gateau, P. Fish, docosahexaenoic acid and Alzheimer's disease. Prog. Lipid Res., 2009, 48, 239- 256. DOI: https://doi.org/10.1016/j.plipres.2009.04.001

Yin, H., Chen, L., Chen, X. and Liu, X. Soluble amyloid beta oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma. Med. Hypotheses, 2008, 71, 77- 80. DOI: https://doi.org/10.1016/j.mehy.2008.01.030

Wostyn, P., Audenaert, K. and De Deyn, P.P. Alzheimer's disease and glaucoma: Is there a causal relationship? Br. J. Ophthalmol., 2009, 93, 1557-1559. DOI: https://doi.org/10.1136/bjo.2008.148064

Bunin, A.I., Filina, A.A. and Erichev, V.P. A glutathione deficiency in open-angle glaucoma and the approaches to its correction. Vestn. Oftalmol., 1992, 108, 13-15.

Filina, A.A., Davydova, N.G. and Kolomoitseva, E.M. The effect of lipoic acid on the components of the glutathione system in the lacrimal fluid of patients with open-angle glaucoma. Vestn. Oftalmol., 1993, 109, 5-7.

Filina, A.A., Davydova, N.G., Endrikhovskii, S.N. and Shamshinova, A.M. Lipoic acid as a means of metabolic therapy of open-angle glaucoma. Vestn. Oftalmol. 1995, 111, 6-8.

de Arcelus M.P., Toledo, E., Martí­nez-González, M.í., Sayón-Orea, C., Gea, A. and Moreno-Montañés, J. Omega 3:6 ratio intake and incidence of glaucoma: The SUN cohort. Clin Nutr., 2014, 33, 1041-1045. DOI: https://doi.org/10.1016/j.clnu.2013.11.005

Kang, J.H., Pasquale, L.R., Willett, W.C., Rosner, B.A., Egan, K.M., Faberowski, N. and Hankinson, S.E. Dietary fat consumption and primary open-angle glaucoma. Am. J. Clin. Nutr., 2004, 79, 755–764. DOI: https://doi.org/10.1093/ajcn/79.5.755

Ren, H., Magulike, N., Ghebremeskel, K. and Crawford, M. Primary open-angle glaucoma patients have reduced levels of blood docosahexaenoic and eicosapentaenoic acids. Prostaglandins Leukot. Essent. Fatty Acids, 2006, 74, 157–163. DOI: https://doi.org/10.1016/j.plefa.2005.11.007

Kinouchi, R., Ishiko, S., Hanada, K., Hayashi, H., Mikami, D. and Tani, T. A low meat diet increases the risk of open-angle glaucoma in women - The results of population-based, cross-sectional study in Japan. PLoS ONE, 2018, 13, e0204955. DOI: https://doi.org/10.1371/journal.pone.0204955

Kang, J.H., Willett, W.C., Rosner, B.A., Buys, E., Wiggs, J.L. and Pasquale, L.R. Association of dietary nitrate intake with primary open-angle glaucoma: A prospective analysis from the Nurses' Health Study and Health Professionals Follow-up Study. JAMA Ophthalmol., 2016, 134, 294-303. DOI: https://doi.org/10.1001/jamaophthalmol.2015.5601

Harada, C., Kimura, A., Guo, X., Namekata, K. and Harada, T. Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. Br. J. Ophthalmol., 2019, 103, 161-166. DOI: https://doi.org/10.1136/bjophthalmol-2018-312724

Wallace, D.M., Pokrovskaya, O. and O'Brien, C.J. The function of matricellular proteins in the lamina cribrosa and trabecular meshwork in glaucoma. J. Ocul. Pharmacol. Ther., 2015, 31, 386-395. DOI: https://doi.org/10.1089/jop.2014.0163

Cao, L., Graham, S.L. and Pilowsky, PM. Carbohydrate ingestion induces differential autonomic dysregulation in normal-tension glaucoma and primary open angle glaucoma. PLoS One, 2018, 13, e0198432. DOI: https://doi.org/10.1371/journal.pone.0198432

Tielsch, J.M., Katz, J., Sommer, A., Quigley, H.A. and Javitt, J.C. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch. Ophthalmol., 1995, 113, 216-221. DOI: https://doi.org/10.1001/archopht.1995.01100020100038

Jonas, J.B. and Gründler, A.E. Prevalence of diabetes mellitus and arterial hypertension in primary and secondary open-angle glaucomas. Graefes Arch. Clin. Exp. Ophthalmol., 1998, 236, 202–206. DOI: https://doi.org/10.1007/s004170050065

de Voogd, S., Ikram, M.K., Wolfs, R.C., Jansonius, N.M., Witteman, J.C., Hofman, A. and de Jong, P.T. Is diabetes mellitus a risk factor for open-angle glaucoma? The Rotterdam study. Ophthalmol., 2006, 113, 1827-1831. DOI: https://doi.org/10.1016/j.ophtha.2006.03.063

Howard, D.L., Kim, M.M. and Hartnett, M.E. Predicting glaucoma diagnosis in an elderly sample: revisiting the established populations for epidemiologic studies of the elderly. J. Natl. Med. Assoc., 2011, 103, 332-341. DOI: https://doi.org/10.1016/S0027-9684(15)30314-X

Tan, G.S., Wong, T.Y., Fong, C.W. and Aung, T. Diabetes, metabolic abnormalities and glaucoma. Arch. Ophthalmol., 2009, 127, 1354-1361. DOI: https://doi.org/10.1001/archophthalmol.2009.268

Uhm, K.B. and Shin, D.H. Glaucoma risk factors in primary open-angle glaucoma patients compared to ocular hypertensives and control subjects. Korean J. Ophthalmol., 1992, 6, 91-99. DOI: https://doi.org/10.3341/kjo.1992.6.2.91

Orzalesi, N., Rossetti, L. and Omboni, S. Vascular risk factors in glaucoma: the results of a national survey. Graefes Arch. Clin. Exp. Ophthalmol., 2007, 245, 795-802. DOI: https://doi.org/10.1007/s00417-006-0457-5

Klein, B.E., Klein, R. and Jensen, S.C. Open-angle glaucoma and older-onset diabetes. The Beaver Dam Eye Study. Ophthalmol., 1994, 101, 1173-1177. DOI: https://doi.org/10.1016/S0161-6420(94)31191-2

Mitchell, P., Smith, W., Chey, T. and Healey, P.R. Open-angle glaucoma and diabetes: the Blue Mountains eye study, Australia. Ophthalmol., 104: 712-718. DOI: https://doi.org/10.1016/S0161-6420(97)30247-4

Welinder, L.G., Riis, A.H., Knudsen, L.L. and Thomsen, R.W. Diabetes, glycemic control and risk of medical glaucoma treatment: A population-based case-control study. Clin. Epidemiol., 2009, 1, 125-131. DOI: https://doi.org/10.2147/CLEP.S6831

Newman-Casey, P.A., Talwar, N., Nan, B., Musch, D.C. and Stein, J.D. The relationship between components of metabolic syndrome and open-angle glaucoma. Ophthalmol., 2011, 118, 1318-1326. DOI: https://doi.org/10.1016/j.ophtha.2010.11.022

Pasquale, L.R., Kang, J.H., Manson, J.E., Willett, W.C., Rosner, B.A. and Hankinson, S.E. Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmol., 2006, 113, 1081-1086. DOI: https://doi.org/10.1016/j.ophtha.2006.01.066

Chopra, V., Varma, R., Francis, B.A., Wu, J., Torres, M., Azen, S.P. and Los Angeles Latino Eye study group. type 2 diabetes mellitus and the risk of open-angle glaucoma: The Los Angeles Latino Eye Study. Ophthalmol., 2008, 115, 227-232. DOI: https://doi.org/10.1016/j.ophtha.2007.04.049

Graw, J., Welzl, G., Ahmad, N., Klopp, N., Heier, M., Wulff, A., Heinrich, J., Doring, A, Karrasch, S., Nowak, D., Schulz, H., Rathmann, W., Illig, T., Peters, A., Holle, R., Meisinger, C. and Wichmann, H.E.. The KORA Eye Study: a population-based study on eye diseases in Southern Germany (KORA F4). Invest. Ophthalmol. Vis. Sci., 2011, 52, 7778-7786. DOI: https://doi.org/10.1167/iovs.10-7113

Ellis, J.D., Evans, J.M., Ruta, D.A., Baines, P.S., Leese, G., MacDonald, T.M. and Morris, A.D. Glaucoma incidence in an unselected cohort of diabetic patients: Is diabetes mellitus a risk factor for glaucoma? DARTS/MEMO collaboration. Diabetes Audit and Research in Tayside Study. Medicines Monitoring Unit. Br. J. Ophthalmol., 2000, 84, 1218-1224.

Wise, L.A., Rosenberg, L., Radin, R.G., Mattox, C., Yang, E.B., Palmer, J.R. and Seddon, J.M. A prospective study of diabetes, lifestyle factors, and glaucoma among African-American women. Ann. Epidemiol., 2011, 21, 430-439. DOI: https://doi.org/10.1016/j.annepidem.2011.03.006

Elisaf, M., Kitsos, G., Bairaktari, E., Kalaitzidis, R., Kalogeropoulos, C. and Psilas, K.. Metabolic abnormalities in patients with primary open-angle glaucoma. Acta Ophthalmol. Scand., 2001, 79, 129-132. DOI: https://doi.org/10.1034/j.1600-0420.2001.079002129.x

Zhao, D., Cho, J., Kim, M.H., Friedman, D., and Guallar, E. Diabetes, Glucose Metabolism, and Glaucoma: The 2005–2008 National Health and Nutrition Examination Survey. PLoS One, 2014, 9, e112460. DOI: https://doi.org/10.1371/journal.pone.0112460

Yuki, K., Murat, D., Kimura, I., Ohtake, Y. and Tsubota, K. Reduced-serum vitamin C and increased uric acid levels in normal-tension glaucoma. Graefes Arch. Clin. Exp. Ophthalmol., 2010, 248, 243-248. DOI: https://doi.org/10.1007/s00417-009-1183-6

Wang, S.Y., Singh, S. and Lin, S.C. Glaucoma and vitamins A, C, and E supplement intake and serum levels in a population-based sample of the United States. Eye (Lond.), 2013, 27, 487-494. DOI: https://doi.org/10.1038/eye.2013.10

Asregadoo, E.R. Blood levels of thiamine and ascorbic acid in chronic open-angle glaucoma. Ann. Ophthalmol., 1979, 11, 1095-1100.

Cumurcu, T., Sahin, S. and Aydin, E. Serum homocysteine, vitamin B 12 and folic acid levels in different types of glaucoma. BMC Ophthalmol. 2006, 6, 6. DOI: https://doi.org/10.1186/1471-2415-6-6

Williams, P.A., Harder, J.M., John, S.W.M. Glaucoma as a Metabolic Optic Neuropathy: Making the Case for Nicotinamide Treatment in Glaucoma. J. Glaucoma, 2017, 26, 1161-1168. DOI: https://doi.org/10.1097/IJG.0000000000000767

Giaconi, J.A., Yu, F., Stone, K.L., Pedula, K.L., Ensrud, K.E., Cauley, J.A., Hochberg, M.C. and Coleman, A.L. The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African-American women in the study of osteoporotic fractures. Am. J. Ophthalmol., 2012, 154, 635-644. DOI: https://doi.org/10.1016/j.ajo.2012.03.048

Coleman, A.L., Stone, K.L., Kodjebacheva, G., Yu, F., Pedula, K.L., Ensrud, K.E., Cauley, J.A., Hochberg, M.C., Topouzis, F. and Badala F. and Mangione, C.M. Glaucoma risk and the consumption of fruits and vegetables among older women in the study of osteoporotic Fractures. Am. J. Ophthalmol., 2008, 145, 1081-1089. DOI: https://doi.org/10.1016/j.ajo.2008.01.022

Kim, H.T., Kim, J.M., Kim, J.H., Lee, M.Y., Won, Y.S., Lee, J.Y. and Park, K.H. The relationship between vitamin D and glaucoma: A Kangbuk Samsung health study. Korean J. Ophthalmol., 2016, 3, 426-433. DOI: https://doi.org/10.3341/kjo.2016.30.6.426

Lv, Y., Yao, Q., Ma, W., Liu, H., Ji, J. and Li, X. Associations of vitamin D deficiency and vitamin D receptor (Cdx-2, Fok I, Bsm I and Taq I) polymorphisms with the risk of primary open-angle glaucoma. BMC Ophthalmol., 2016, 16, 116. DOI: https://doi.org/10.1186/s12886-016-0289-y

Arar, Ž.V., Pravećek, M.K., Miškić, B., Vatavuk, Z., Rodriguez, J.V. and Sekelj, S. Association between serum vitamin D level and glaucoma in women. Acta Clin. Croat., 2016, 55, 203-208. DOI: https://doi.org/10.20471/acc.2016.55.02.04

Burgess, L.G., Uppal, K., Walker, D.I., Roberson, R.M., Tran, V., Parks, M.B., Wade, E.A., May, A.T., Umfress, A.C., Jarrell, K.L., Stanley, B.O, Kuchtey, R.W., Jones, D.P. and Brantley, MA Jr. Metabolome-wide association study of primary open angle glaucoma. Investig. Ophthalmol. Vis. Sci., 2015, 56, 5020-5028. DOI: https://doi.org/10.1167/iovs.15-16702

Gye, H.J., Kim, J.M., Yoo, C., Shim, S.H., Won, Y.S., Sung, K.C., Lee, M.Y. and Park, K.H. Relationship between high serum ferritin level and glaucoma in a South Korean population: The Kangbuk Samsung health study. Br. J. Ophthalmol., 2016, 100, 1703-1707. DOI: https://doi.org/10.1136/bjophthalmol-2015-307678

Belmonte, A., Tormo, C., Lopez, N., Villalba, C., Fernandez, C. and Hernandez, F. Vitamins A, E, B12 and folate levels in different types of glaucoma. Clin. Chem. Lab. Med., 2011, 49, S816.

Engin, K.N., Yemişci, B., Yiğit, U., Ağaçhan, A. and Coşkun, C. Variability of serum oxidative stress biomarkers relative to biochemical data and clinical parameters of glaucoma patients. Mol. Vis., 2010, 16, 1260-1271.

Ramdas, W.D., Wolfs, R.C.W., Kiefte-de Jong, J.C., Hofman, A., de Jong, P.T.V.M., Vingerling, J.R. and Jansonius, N.M. Nutrient intake and risk of open-angle glaucoma: The Rotterdam Study. Eur. J. Epidemiol., 2012, 27, 385-393. DOI: https://doi.org/10.1007/s10654-012-9672-z

Hanneken, A., Lin, F., Johnson, J. and Maher, P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol. Vis. Sci., 2006, 47, 3164-3177. DOI: https://doi.org/10.1167/iovs.04-1369

Lucius, R. and Sievers, J. Postnatal retinal ganglion cells in vitro: protection against reactive oxygen species (ROS)-induced axonal degeneration by cocultured astrocytes. Brain Res., 1996, 743, 56-62. DOI: https://doi.org/10.1016/S0006-8993(96)01029-3

Ritch, R. Neuroprotection: is it already applicable to glaucoma therapy? Curr. Opin. Ophthalmol., 2000, 11, 78-84. DOI: https://doi.org/10.1097/00055735-200004000-00002

Veach, J. Functional dichotomy: glutathione and vitamin E in homeostasis relevant to primary open-angle glaucoma. Br. J. Nutr., 2004, 91, 809-829. DOI: https://doi.org/10.1079/BJN20041113

West, A., Oren, G. and Moroi, S. Evidence for the use of nutritional supplements and herbal medicines in common eye diseases. Am. J. Ophthalmol., 2006, 141, 157-166. DOI: https://doi.org/10.1016/j.ajo.2005.07.033

Mousa, A., Kondkar, A.A., Al-Obeidan, S.A., Azad, T.A., Sultan, T., Osman, E. and Abu-Amero, K.K. Association of total antioxidants level with glaucoma type and severity. Saudi Med. J., 2015, 36, 671-677. DOI: https://doi.org/10.15537/smj.2015.6.10697

Mares, J. Lutein and zeaxanthin isomers in eye health and disease. Annu. Rev. Nutr., 2016, 36, 571-602. DOI: https://doi.org/10.1146/annurev-nutr-071715-051110

Tezel, G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog. Retin. Eye Res., 2006, 25, 490-513. DOI: https://doi.org/10.1016/j.preteyeres.2006.07.003

Zhang, C., Wang, Z., Zhao, J., Li, Q., Huang, C., Zhu, L. and Lu, D. Neuroprotective effect of lutein on NMDA-induced retinal ganglion cell injury in rat retina. Cell. Mol. Neurobiol., 2016, 36, 531-540. DOI: https://doi.org/10.1007/s10571-015-0231-5

Bernstein, P.S., Khachik, F., Carvalho, L.S., Muir, G.J., Zhao, D.Y. and Katz, N.B. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Exp. Eye Res., 2001, 72, 215–23. DOI: https://doi.org/10.1006/exer.2000.0954

Kerimi, A. and Williamson, G. The cardiovascular benefits of dark chocolate. Vascul. Pharmacol., 2015, 71, 11-15. DOI: https://doi.org/10.1016/j.vph.2015.05.011

Heiss, C., Kleinbongard, P., Dejam, A., Perre, S., Schroeter, H., Sies, H. and Kelm, M. Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J. Am. Coll. Cardiol., 2005, 46, 1276-1283. DOI: https://doi.org/10.1016/j.jacc.2005.06.055

Terai, N., Gedenk, A., Spoerl, E., Pillunat, L.E. and Stodtmeister, R. The short-term effect of flavonoid-rich dark chocolate on retinal vessel diameter in glaucoma patients and age-matched controls. Acta Ophthalmol., 2014, 92, e341-e345. DOI: https://doi.org/10.1111/aos.12373

Jabbarpoor-Bonyadi, M.H., Yazdani, S. and Saadat, S. The ocular hypotensive effect of saffron extract in primary open angle glaucoma: A pilot study. BMC Compl. Altern. Med., 2014, 14, 399. DOI: https://doi.org/10.1186/1472-6882-14-399

Maccarone, R., Di Marco, S. and Bisti, S. Saffron supplement maintains morphology and function after exposure to damaging light in mammalian retina. Invest. Ophthalmol. Vis. Sci., 2008, 49, 1254-1261. DOI: https://doi.org/10.1167/iovs.07-0438

Patel, S., Mathan, J.J., Vaghefi, E. and Braakhuis, A.J. The effect of flavonoids on visual function in patients with glaucoma or ocular hypertension: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol., 2015, 253, 1841-1850. DOI: https://doi.org/10.1007/s00417-015-3168-y

Milea, D. and Aung, T. Flavonoids and glaucoma: revisiting therapies from the past. Graefes Arch. Clin. Exp. Ophthalmol., 2015, 253, 1839-1840. DOI: https://doi.org/10.1007/s00417-015-3167-z

Maher, P. and Hanneken, A. Flavonoids protect retinal ganglion cells from oxidative stress-induced death. Invest. Ophthalmol. Vis. Sci., 2005, 46, 4796-4803. DOI: https://doi.org/10.1167/iovs.05-0397

Grassi, D., Mulder, T.P., Draijer, R., Desideri, G., Molhuizen, H.O. and Ferri, C. Black tea consumption dose-dependently improves flow-mediated dilation in healthy males. J. Hypertens., 2009, 27, 774-781. DOI: https://doi.org/10.1097/HJH.0b013e328326066c

Wu, C.M., Wu, A.M., Tseng, V.L., Yu, F. and Coleman, A.L. Frequency of a diagnosis of glaucoma in individuals who consume coffee, tea and/or soft drinks. Br. J. Ophthalmol., 2018, 102, 1127-1133. DOI: https://doi.org/10.1136/bjophthalmol-2017-310924

Ekici, F., Korkmaz, S., Karaca, E.E., Sül, S., Tufan, H.A., Aydın, B. and Dileköz, E. The Role of Magnesium in the Pathogenesis and Treatment of Glaucoma. Int. Sch. Res. Notices, 2014, 2014, Article ID 745439. DOI: https://doi.org/10.1155/2014/745439

Gaspar, A.Z., Gasser, P. and Flammer, J. The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Ophthalmologica, 1995, 209, 11-13. DOI: https://doi.org/10.1159/000310566

Lane, B.C. Evaluation of intraocular pressure with daily, sustained close work stimulus to accommodation, lowered tissue chromium and dietary deficiency of ascorbic acid. Doc. Ophthalmol., 1980, 28, 149-155. DOI: https://doi.org/10.1007/978-94-009-8662-6_22

Jünemann, G.M., Michalke, B., Lucio, M., Chaudhri, A., Schlötzer-Schrehardt, U., Rejdak, R., Rć™kas, M. and Hohberge, B. Aqueous humor selenium level and open-angle glaucoma. J. Trace Elem. Med. Bio., 2018, 50, 67-72. DOI: https://doi.org/10.1016/j.jtemb.2018.06.010

Akyol, N., Deger, O., Keha, E.E. and Kilic, S. Aqueous humour and serum zinc and copper concentrations of patients with glaucoma and cataract. Br. J. Ophthalmol., 1990, 74, 661-662. DOI: https://doi.org/10.1136/bjo.74.11.661

Jiwani, A.Z., Rhee, D.J., Brauner, S.C., Gardiner, M.F., Chen, T.C., Shen, L.Q., Chen, S.H., Grosskreutz, C.L., Chang, K.K., Kloek, C.E., Greenstein, S.H., Borboli-Gerogiannis, S., Pasquale, D.L., Chaudhry, S., Loomis, S. Wiggs, J.L., Pasquale, L.R. and Turalba, A.V. Effects of caffeinated coffee consumption on intraocular pressure, ocular perfusion pressure, and ocular pulse amplitude: a randomized controlled trial. Eye (Lond.), 2012, 26, 1122-1130. DOI: https://doi.org/10.1038/eye.2012.113

Kang, J., Willett, W., Rosner, B., Hankinson, S. and Pasquale, L. Caffeine consumption and the risk of primary open-angle glaucoma: a prospective cohort study. Invest. Ophthalmol. Vis. Sci., 2008, 49, 1924-1931. DOI: https://doi.org/10.1167/iovs.07-1425

Pasquale, L., Wiggs, J., Willett, W. and Kang, J. The relationship between caffeine and coffee consumption and exfoliation glaucoma or glaucoma suspect: A prospective study in two cohorts. Invest. Ophthalmol. Vis. Sci., 2012, 53, 6427-6433. DOI: https://doi.org/10.1167/iovs.12-10085

Zhu, M.D. and Cai, F.Y. Evidence of compromised circulation in the pathogenesis of optic nerve damage in chronic glaucomatous rabbit. Chin. Med. J., 1993, 106, 922-927.

Zhu, M.D. and Cai, F.Y. The effect of Inj. Salviae Miltiorrhizae Co. on the retrograde axoplasmic transport in the optic nerve of rabbits with chronic IOP elevation. 1991, 27, 174-178.

Cybulska-Heinrich, A.K., Mozaffarieh, M. and Flammer, J. Ginkgo biloba: An adjuvant therapy for progressive normal and high tension glaucoma Mol. Vis., 2012, 18, 390-402.

Caprioli, J., Sears, M., Bausher, L., Gregory, D. and Mead, M. Forskolin lowers intraocular pressure by reducing aqueous inflow. Invest. Ophthalmol. Vis. Sci., 1984, 25, 268-277.

Caprioli, J. and Sears, M. The adenylate cyclase receptor complex and aqueous humor formation. Yale J. Biol. Med., 1984, 57, 283-300.

Porcella, A., Maxia, C., Gessa, G.L. and Pani, L. The human eye expresses high levels of CB1 cannabinoid receptor mRNA and protein. Eur. J. Neurosci., 2000, 12, 1123-1127. DOI: https://doi.org/10.1046/j.1460-9568.2000.01027.x

Flach, A.J. Delta-9-tetrahydrocannabinol (THC) in the treatment of end-stage open-angle glaucoma. Trans. Am. Ophthalmol. Soc., 2002, 100, 215-222.

Grave, K. and Wienereb, R., editors. Medical management of open angle glaucoma. Kurger Publication, Hague, Netherlands, 2010.

Mvitu, M.M., Longo-Mbenza, B., Tulomba, M.D., Kibokela, N.D. and Nge Okwe, A. Role of Mediterranean diet, tropical vegetables rich in antioxidants, and sunlight exposure in blindness, cataract and glaucoma among African type 2 diabetics. Int. J. Ophthalmol., 2012, 5, 231-237.

Trichopoulou, A., Costacou, T., Bamia, C. and Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med., 2003, 348, 2599-2608. DOI: https://doi.org/10.1056/NEJMoa025039

de Lorgeril, M., Salen, P., Martin, J.L., Monjaud, I., Delaye, J. and Mamelle, N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation, 1999, 99, 779-785. DOI: https://doi.org/10.1161/01.CIR.99.6.779

Rumawas, M.E., Meigs, J.B., Dwyer, J.T., Mckeown, N.M. and Jacques, P.F. Mediterranean-style dietary pattern, reduced risk of metabolic syndrome traits, and incidence in the Framingham Offspring Cohort. Am. J. Clin. Nutr., 2009, 90, 1608-1614. DOI: https://doi.org/10.3945/ajcn.2009.27908

Potter, J.D. Cancer prevention: epidemiology and experiment. Cancer Lett., 1997, 114, 7-9. DOI: https://doi.org/10.1016/S0304-3835(97)04615-6

Harborne, J.B. Plant phenolics. In: Bell, E.A. and Charlwood, B.V., editors. Encyclopedia of Plant Physiology, Vol. 8. Secondary Plant Products. Berlin: Springer; 1986, 329-395. DOI: https://doi.org/10.1007/978-3-642-67360-3_14

Rimm, E.B., Giovannucci, E.L., Stampfer, M.J., Colditz, G.A., Litin, L.B. and Willett, W.C. Reproductibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am. J. Epidemio., 1992, 135, 1114-1126, discussion 1127-1136. DOI: https://doi.org/10.1093/oxfordjournals.aje.a116211

Witztum, J.L. The oxidation hypothesis of atherosclerosis. Lancet, 1994, 344, 793-795. DOI: https://doi.org/10.1016/S0140-6736(94)92346-9

Kawai, S.I., Vora, S., Das, S., Gachie, E., Becker, B. and Neufeld, AH. Modeling of risk factors for the degeneration of retinal ganglion cells after ischemia/reperfusion in rats: Effects of age, caloric restriction, diabetes, pigmentation, and glaucoma. Faseb J., 2001, 15, 1285-1287. DOI: https://doi.org/10.1096/fj.00-0666fje

Neufeld, A.H. and Gachie, E.N. The inherent, age-dependent loss of retinal ganglion cells is related to the lifespan of the species. Neurobiol. Aging, 2003, 24, 167-172. DOI: https://doi.org/10.1016/S0197-4580(02)00059-3

Li, Y. and Wolf, N.S. Effects of age and long-term caloric restriction on the aqueous collecting channel in the mouse eye. J. Glaucoma, 1997, 6, 18-22. DOI: https://doi.org/10.1097/00061198-199702000-00005

Kim, K.Y., Ju, W.K. and Neufeld, A.H. Neuronal susceptibility to damage: comparison of the retinas of young, old and old/caloric restricted rats before and after transient ischemia. Neurobiol. Aging, 2004, 25, 491-500. DOI: https://doi.org/10.1016/j.neurobiolaging.2003.07.005

Shindler, K.S., Ventura, E., Rex, T.S., Elliott, P. and Rostami, A. SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest. Ophthalmol. Vis. Sci., 2007, 48, 3602-3609.113. Anekonda, T.S. The benefits of calorie restriction and calorie restriction mimetics as related to the eye. Open Longev. Sci., 2009, 3, 28-37. DOI: https://doi.org/10.1167/iovs.07-0131

Chiotoroiu, S.M, de Popa, D.P., Åžtefćƒniu, G.I., Secureanu, F.A. and Purcćƒrea, V.L. The importance of alcohol abuse and smoking in the evolution of glaucoma disease. J. Med. Life, 2013, 6, 226-229.

Giurlani, B.P., Obie, L.G., Petersen, C.G. and Presley, D.D. Alcohol and open angle glaucoma–influence on detection, IOP, BP/IOP ratios. J. Am. Opt. Assoc., 1978, 49, 409-416.

Buckingham, T. and Young, R. The rise and fall of intra-ocular pressure: the influence of physiological factors. Ophthalmic Physiol. Opt., 1986, 6, 95-99. DOI: https://doi.org/10.1111/j.1475-1313.1986.tb00707.x

Houle, R.E. and Grant, W.M. Alcohol, vasopressin, and intraocular pressure. Invest. Ophthalmol., 1967, 6, 145-154.

Leydhecker, W., Krieglstein, G.K. and Uhlich, E. Experimental investigations on the mode of action of alcoholic liquor on the intra-ocular pressure. Klin. Monbl. Augenheilkd., 1978, 173, 75-79.

Kojima, S., Sugiyama, T., Kojima, M., Azuma, I. and Ito, S. Effect of the consumption of ethanol on the microcirculation of the human optic nerve head in the acute phase. Jpn. J. Ophthalmol., 2000, 44, 318-319. DOI: https://doi.org/10.1016/S0021-5155(00)00158-1

Ramdas, W.D., Wolfs, R.C., Hofman, A., De Jong, P.T., Vingerling, J.R. and Jansoniusg, N.M. Lifestyle and risk of developing open-angle glaucoma: The Rotterdam study. Arch. Ophthalmol., 2011, 129, 767-772. DOI: https://doi.org/10.1001/archophthalmol.2010.373

Klein, B.E., Klein, R. and Ritter, L.L. Relationship of drinking alcohol and smoking to prevalence of open-angle glaucoma. The Beaver Dam Eye Study. Ophthalmology, 1993, 100, 1609-1613. DOI: https://doi.org/10.1016/S0161-6420(93)31429-6

Kang, J.H., Willett, W.C., Rosner, B.A., Hankinson, S.E. and Pasquale, L.R. Prospective study of alcohol consumption and the risk of primary open-angle glaucoma. Ophthalmic Epidemiol., 2007, 14, 141-147. DOI: https://doi.org/10.1080/09286580601187963

Xu, L., You, Q.S. and Jonas, J.B. Prevalence of alcohol consumption and risk of ocular diseases in a general population: the Beijing Eye Study. Ophthalmology, 2009, 116, 1872-1879. DOI: https://doi.org/10.1016/j.ophtha.2009.04.014

Kahn, H.A. and Milton, R.C. Alternative definitions of open-angle glaucoma. Effect on prevalence and associations in the Framingham eye study. Arch. Ophthalmol., 1980, 98, 2172-2177. DOI: https://doi.org/10.1001/archopht.1980.01020041024003

Fan, B.J., Leung, Y.F., Wang, N., Lam, S.C., Liu, Y., Tam, O.S. and Pang, C.P. Genetic and environmental risk factors for primary open-angle glaucoma. Chin. Med. J. (Engl.), 2004, 117, 706-710.

Seddon, J.M., Schwartz, B. and Flowerdew, G. Case-control study of ocular hypertension. Arch. Ophthalmol., 1983, 101, 891-894. DOI: https://doi.org/10.1001/archopht.1983.01040010891006

Most read articles by the same author(s)