Physiological and Ethological Disruptions Induced by a Mixture of Saccharose/Sucralose 99.5/0.5 - A Study on Ants as Models


Affiliations

  • Universite Libre de Bruxelles, Faculte des Sciences, Bruxelles, 1050, Belgium
  • Universite Libre de Bruxelles, Bruxelles, 1070, Belgium

Abstract

Experiments made on ants as biological models revealed that a marketed 1.3g saccharose/sucralose 99.5/0.5 mixture increased sugared water consumption, decreased general activity, precision of reaction, audacity, brood caring, cognition and ability in acquiring visual conditioning (short term memory), induced aggressiveness against nestmates, and slightly reduced tactile perception. It may not change the speed of locomotion and did not affect middle and long term memory. The adverse effects may be related to the strong sugared taste of the mixture (in presence of saccharose and the mixture, the ants slightly preferred the latter) though containing 4.7 times less sugar than an amount of saccharose providing equivalent sweetness, and to the toxic chloropropanols sucralose may produce. When ants consumed again sugar instead of a saccharose/sucralose mixture, their aggressiveness rapidly decreased during eight hours and entirely vanished in 29 hours.

Keywords

Aggressiveness, Cognition, Conditioning, Food Consumption

Subject Discipline

Zoology

Full Text:

References

Cammaerts M-C, Cammaerts R. Aspartame increases food demand and impacts behavior: A study using ants as models. Acta Biomedica Scientia. 2016; 3:9–23.

Trocho C, Pardo R, Rafecas I, Virgili J, Ramesar X, FernandezLopez JA, Alemany M. Formaldehyde derived from dietary aspartame binds to tissue components in vivo. Life Sciences. 2009; 63:337–49.

Cammaerts M-C, Dero A, Cammaerts R. Stevia: A true glycoside used as a sweetener and not affecting behavior. Asian J Pharmaceutical Research and healthcare. 2016; 8(1):19–31.

Cammaerts M-C, Cammaerts R, Dero A. A 0.123% stevia/ aspartame 91/9 aqueous solution balances the effects of the two substances, and may thus be a safer and tastier sweetener to be used. J Pharmacy and Nutrition Sciences. 2015; 5:236–48.

Grotz VL, Molinary S, Peterson RC, Quinlan ME, Reo R.

Sucralose. Chapter 12 in ‘Alternative Sweeteners’. 4th ed. FL: Lyn O’Brien Nabors, CRC Press, Taylor and Francis; 2011. p. 181–96.

Rodero AB, Rodero LS, Azoubel R. Toxicidad de la sucralosa en humanos: Una revisión. Int J Morphol. 2009; 27(1):239–44.

Available from: https://fr.wikipedia.org/wiki/Sucralose 8. Kolb B, Whishaw IQ. Cerveau et comportement. De Boeck Supérieur. Paris, Bruxelles; 2002. p. 649.

Andre RG, Wirtz RA, Das YT. Insect models for biomedical research. In Woodhead AD, editors, Nonmammalian Animal Models for Biomedical Research. Boca Raton, FL: CRC Press; 1989.

Holldobler B, Wilson EO. The ants. Berlin: Harvard University Press, Springer-Verlag; 1990.

Rachidi Z, Cammaerts M-C, Debeir O. Morphometric study of the eye of three species of Myrmica (Formicidae). Belg J Entomol. 2008; 10:81–91.

Cammaerts M-C. Visual vertical subtended angle of Myrmica ruginodis and Myrmica rubra (Formicidae, Hymenoptera). Bull Soc r belg Ent. 2011; 147:113–20.

Cammaerts M-C. The visual perception of the ant Myrmica ruginodis (Hymenoptera – Formicidae). Biologia. 2012; 67:1165–74.

Cammaerts M-C, Rachidi Z, Beke S, Essaadi Y. Use of olfactory and visual cues for traveling by the ant Myrmica ruginodis (Hymenoptera, Formicidae). Myrmecological News 2012; 16:45–55.

Cammaerts M-C, Nemeghaire S. Why do workers of Myrmica ruginodis (Hymenoptera, Formicidae) navigate by 148:42–52.

Cammaerts MC, Cammaerts R. Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behav Proc 1980; 5: 251-270.

Cammaerts M-C, Cammaerts R. Ontogenesis of ants’ cognitive abilities (Hymenoptera, Formicidae). Advances Studies in Biology. 2015; 7:335–48 + synopsis: 349–50.

Cammaerts M-C, Gosset G. Impact of age, activity and diet on the conditioning performance in the ant Myrmica ruginodis used as a biological model. Int J Biology. 2014; 6:10–20. ISSN: 1916-9671 E-ISSN 1916-968X.

Cammaerts M-C, Rachidi Z, Gosset G. Physiological and ethological effects of caffeine, theophylline, cocaine and atropine; study using the ant Myrmica sabuleti (Hymenoptera, Formicidae) as a biological model. Int J Biology. 2014; 3:64–84.

Cammaerts M-C, Gosset G, Rachidi Z. Some physiological and ethological effects of nicotine; studies on the ant Myrmica sabuleti as a biological model. Int J Biology. 2014; 6:64–81.

Cammaerts M-C, Cammaerts R. Physiological and ethological effects of morphine and quinine, using ants as biological models. J of Pharmaceutical Biology. 2014; 4:43–58.

Cammaerts M-C, Cammaerts D. Physiological and ethological effects of fluoxetine, on ants used as biological models. Int J Biology. 2015; 7(2):1–18. DOI: 10.5539/ijb.v7n2p1.

Cammaerts M-C, Cammaerts D. Physiological and ethological effects of antidepressants: A study using ants as biological models. Int J Pharmac Sciences Invention. 2015; 4(2):4–24. Available from: http://www.ijpsi.org/current-issue.html#Paper2, 27.6718/04204024

Cammaerts M-C, Cammaerts D. Potential harmful effects of Carbamazepine on aquatic organisms, a study using ants as invertebrate models. Int J Biology 2015; 7(3):75–93. DOI: 10.5539/ijb.v7n3p75.

Cammaerts M-C, Cammaerts R. Effects of buprenorphine and methadone, two analgesics used for saving humans dependent on morphine consumption. Int J Pharmac Sciences Invention. 2015; 4:1–19.

Siegel S, Castellan NJ. Nonparametric statistics for the behavioral sciences. Singapore: McGraw-Hill, Book Company; 1989.

Cammaerts M-C, Morel F, Martino F, Warzee N. An easy and cheap software-based method to assess two-dimensional trajectories parameters. Belg J Zoology. 2012; 142:145–51.

Tollefsen KE, Nizzetto L, Hugget DB. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment. Science of the Total Environment. 2012; 438:510–6.

Wiklund A-KE, Breitholtz M, Bengtsson B-E, AdolfssonErici M. Sucralose- An ecotoxical challenger? Chemosphere. 2012; 86:50–5.

Hjorth M, Hansen JH, Camus L. Short-term effects of sucralose on Calanus finmarchicus and Calanus glacialis in Disko Bay, Greenland. Chemistry and Ecology. 2010; 26(45):385–93.

Wiklund A-KE, Adolfsson-Erici M, Liewenborg B, Gorokhova E. Sucralose induces biochemical responses in Daphnia magna. PLoS One 2014; 9(4):e92771. DOI: 10.1371/ journal.pone.0092771.

Grotz VL, Munro IC. An overview of the safety of sucralose. Regulatory Toxicology and Pharmacology. 2009; 55:1–5.

Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: Overview of biological issues. J Toxicol Environ Health, Part B. 2013; 16:399–451.

Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S. Sucralose affects glycemic and hormonal responses to an oral glucose lead. Diabetes Care. 2013; 36:2530–5.


Refbacks

  • There are currently no refbacks.