Hazardous Impact of Coal Dust on Hematological Parameters of Underground Coal Mine Workers

Jump To References Section

Authors

  • PG Department of Physiology, Hooghly Mohsin College, Hooghly - 712101, West Bengal ,IN
  • Department of Physiology, Serampore College, Hooghly - 712201, West Bengal ,IN
  • Department of Physiology, Serampore College, Hooghly - 712201, West Bengal ,IN
  • PG Department of Physiology, Hooghly Mohsin College, Hooghly - 712101, West Bengal ,IN
  • PG Department of Physiology, Hooghly Mohsin College, Hooghly - 712101, West Bengal ,IN
  • PG Department of Physiology, Hooghly Mohsin College, Hooghly - 712101, West Bengal ,IN
  • Department of Nutrition, AKPC Mahavidyalaya, Hooghly - 712602, West Bengal ,IN
  • Department of Physiology, Serampore College, Hooghly - 712201, West Bengal ,IN
  • PG Department of Physiology, Hooghly Mohsin College, Hooghly - 712101, West Bengal ,IN

DOI:

https://doi.org/10.18311/jeoh/2023/34029

Keywords:

Coal Miners, Complete Blood Count, ESR, Haemoglobin, RBC, WBC

Abstract

Due to the nature of their work, coal miners have historically faced significant exposure to large amounts of dust, placing them at a heightened risk. The present study was conducted to explore the hazardous effects of inhalation of coal dust on the haematological parameters of underground coal miners. 120 underground coal miners (60 workers having 5-10 years of experience and the other 60 having 10-20 years of experience) and 62 matched non-exposed to coal dust subjects as control from the locality were recruited for the study. After obtaining consent, different physiological parameters were measured, and blood was collected for assessment of haematological parameters. Observations revealed that there were lower mean values of total RBC count, haemoglobin level, MCV, PCV, MCHC and MCH in coal mine workers whereas mean values of Red Cell Distribution Width (RDW) and ESR were increased in the workers group. Further, coal dust exposure causes increased total leucocyte to count as well as a differential count of lymphocyte, neutrophil, monocyte, and eosinophil in the workers group but, a decreased differential count of basophils was detected among coal dust-exposed workers. All the changes in haematological parameters were found to occur experience-dependent and maximum changes were observed in workers having 10-20 years of working experience. There is a significant likelihood of coal mine workers experiencing changes in their blood composition, which suggests the harmful impact of coal dust on this group. Further, haematological parameters will help health professionals to screen any pathologic conditions and may help to prevent coal dust exposure-associated haematological disorders and complications thereof.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-09-19

How to Cite

Sultana, J., Paul, T., Banerjee, O., Bhaduri, R., Roy, S. S., Ghosh, S., Bandyopadhyay, R., Mukherjee, S., & Syamal, A. K. (2023). Hazardous Impact of Coal Dust on Hematological Parameters of Underground Coal Mine Workers. Journal of Ecophysiology and Occupational Health, 23(3), 153–161. https://doi.org/10.18311/jeoh/2023/34029

Issue

Section

Research Article
Received 2023-06-09
Accepted 2023-07-28
Published 2023-09-19

 

References

Jorjani E, Chelgani SC, Mesroghli SH. Prediction of microbial desulfurization of coal using artificial neural Networks. Mineral Engineering. 2007; 2:1285-92. https://doi.org/10.1016/j. mineng.2007.07.003 DOI: https://doi.org/10.1016/j.mineng.2007.07.003

Huang X, Li W, Attfield MD, Nadas A, Frenkel K, Finkelman RB. Mapping and prediction of coal workers’ pneumoconiosis with bioavailable iron content in the bituminous coals. Environ Health Perspect. 2005; 113(8):964-8. https://doi.org/10.1289/ehp.7679 PMid:16079064 PMCid:PMC1280334 DOI: https://doi.org/10.1289/ehp.7679

Castranova V, Vallyathan V. Silicosis, and coal workers’ pneumoconiosis. Env Health Perspect. 2000; 108:675-84. https:// doi.org/10.1289/ehp.00108s4675 PMid:10931786 PMCid: PMC1637684 DOI: https://doi.org/10.1289/ehp.00108s4675

Shekarian Y, Rahimi E, Rezaee M, Su WC, Roghanchi P. Respirable coal mine dust: A review of respiratory deposition, regulations, and characterization. Minerals. 2021; 11(7):696. https://doi.org/10.3390/min11070696 DOI: https://doi.org/10.3390/min11070696

Walton WH, Dodgson J, Hadden GG, Jacobsen M. The effect of quartz and other non-coal dust in coal workers’ pneumoconiosis. In Inhaled Particles IV Part 2, Oxford ed; Pergamon Press: Oxford, UK, pp. 669–689; 1977.

International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risks to Humans, Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils; World Health Organization; 1997.

Brondy J, Tutak M. Exposure to harmful dust on fully powered longwall coal mines in Poland. Int J Environ Res Pub Health. 2018; 15(9):1846. https://doi.org/10.3390/ijerph15091846 PMid:30150562 PMCid:PMC6164427 DOI: https://doi.org/10.3390/ijerph15091846

Fabiano B, Currò F, Reverberi AP, Palazzi E. Coal dust emissions: From environmental control to risk minimization by underground transport. An applicative case studies. Process Saf Environ Prot. 2014; 92:150–9. https://doi.org/10.1016/j. psep.2013.01.002 DOI: https://doi.org/10.1016/j.psep.2013.01.002

Beer C, Kolstad HA, Søndergaard K, Bendstrup E, Heederik D, Olsen KE, Omland Ø, Petsonk E, Sigsgaard T, Sherson DL. A systematic review of occupational exposure to coal dust and the risk of interstitial lung diseases. Eur Clin Respir J. 2017; 4(1):1264711. https://doi.org/10.1080/20018525.2017.1264711 PMid:28326173 PMCid:PMC5328367 DOI: https://doi.org/10.1080/20018525.2017.1264711

Masto RE, George J, Rout TK, Ram LC. Multi-element exposure risk from soil and dust in a coal industrial area. J Geochem Explor. 2017; 176:100–7. https://doi.org/10.1016/j.gexplo.2015.12.009 DOI: https://doi.org/10.1016/j.gexplo.2015.12.009

Li F, Zhang J, Huang J, Huang D, Yang J, Song Y, Zeng G. Heavy metals in road dust from Xiandao District, Changsha City, China: Characteristics, health risk assessment, and integrated source identification. Environ Sci Pollut Res. 2016; 23:13100–13. https:// doi.org/10.1007/s11356-016-6458-y PMid:27000116 DOI: https://doi.org/10.1007/s11356-016-6458-y

Lin M, Gui H, Wang Y, Peng W. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China. Environ Sci Pollut Res. 2017; 24:1987–98. https:// doi.org/10.1007/s11356-016-7934-0 PMid:27798807 DOI: https://doi.org/10.1007/s11356-016-7934-0

Mandal K, Kumar A, Tripathi N, Singh R, Chaulya S, Mishra P, Bandyopadhyay L. Characterization of different road dust in opencast coal mining areas of India. Environ Monit Assess. 2012; 184:3427–41. https://doi.org/10.1007/s10661-011-2197-1 PMid:21701887 DOI: https://doi.org/10.1007/s10661-011-2197-1

Ishtiaq M, Jehan N, Khan SA, Muhammad S, Saddique U, Iftikhar B, Zahidullah. Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan. Environ Sci Pollut Res Int. 2018; 25(15):14666- 73. https://doi.org/10.1007/s11356-018-1655-5 PMid:29532380 DOI: https://doi.org/10.1007/s11356-018-1655-5

Orecchio S, Amorello D, Barreca S. Wood pellets for home heating can be considered environmentally friendly fuels? Heavy metals determination by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) in their ashes and the health risk assessment for the operators. Microchem J. 2016; 127:178– 83. https://doi.org/10.1016/j.microc.2016.03.008 DOI: https://doi.org/10.1016/j.microc.2016.03.008

Zhang S, Liu G, Sun R, Wu D. Health risk assessment of heavy metals in groundwater of coal mining area: A case study in Dingji coal mine, Huainan Coalfield, China. Hum Ecol Risk Assess Int. 2016; 22(7):1469-79. https://doi.org/10.1080/10807039.2016.118 5689 DOI: https://doi.org/10.1080/10807039.2016.1185689

Lewis SA, Pavord ID, Stringer JR, Knox AJ, Weiss ST, Britton JR. The relation between peripheral blood leukocyte counts and respiratory symptoms, atopy, lung function, and airway responsiveness in adults. Chest. 2001; 119(1):105-14. https://doi. org/10.1378/chest.119.1.105 PMid:11157591 DOI: https://doi.org/10.1378/chest.119.1.105

Van Kampen EJ, Zijlstra WG. Determination of haemoglobin and its derivatives. Adv Clin Chem. 1965; 8:141-87. https://doi. org/10.1016/S0065-2423(08)60414-X PMid:5321443 DOI: https://doi.org/10.1016/S0065-2423(08)60414-X

Meo SA, Azeem MA, Arian SA, Subhan MM. Haematological changes in cement mill workers. Saudi Med J. 2002; 11:1386-9.

Bessman JD, Gilmer PRJr, Gardner FH. Improved classification of anaemias by MCV and RDW. Am J Clin Pathol. 1983; 80:322-6. https://doi.org/10.1093/ajcp/80.3.322 PMid:6881096 DOI: https://doi.org/10.1093/ajcp/80.3.322

Mojiminiyi FBO, Merenu IA, Ibrahim MTO, Njoku CH. The effect of cement dust exposure on haematological and liver function parameters of cement factory workers in Sokoto, Nigeria. Niger J Physiol Sci. 2008; 23(1-2):111-4. https://doi.org/10.4314/njps. v23i1-2.54945 PMid:19434225 DOI: https://doi.org/10.4314/njps.v23i1-2.54945

Jude ALC, Sasikala K, Ashok Kumar R, Sudha S, Raichel L. Haematological and cytogenetic studies in workers occupationally exposed to cement dust. Int J Human Gen. 2002; 2(2):95–9. https://doi.org/10.1080/09723757.2002.11885794 DOI: https://doi.org/10.1080/09723757.2002.11885794

Erhabor O, Kebbe BI, Isaac IZ, Yakubu A, Marafa Y, Okwesili AN, Buhari HA, Wase A, Onuigwe FU, Aghedo F, Ikhuenbor D, Mainasara A, Dallatu MK, Uko EK, Udomah FP, Iwueke IP, Adias TC, Igbineweka OO. Effect of occupational exposure to cement dust on some haematological parameters of workers in a cement company in Sokoto, Nigeria Int J Med Sci. Health Care. 2013; 1(7):21- 5.

Singhi MK, Menghani PR, Gupta LK, Kachhawa D, Bansal M. Occupational contact dermatitis among the traditional ‘tie’ and ‘dye’ cottage industry in Western Rajasthan. Indian J Dermatol Venereol Leprol. 2005; 71:329-32. https://doi.org/10.4103/0378- 6323.16783 PMid:16394457 DOI: https://doi.org/10.4103/0378-6323.16783

Liaqat I, Arshad M, Arshad R, Arshad N. Exposure to textile chemicals leads to microcytic anaemia and hypersensitivity in textile workers. Pakistan J Zool. 2009; 41(5):381-7.

Subha R, Koshy RC. Reactive thrombocytosis and pseudohyperkalemia- entities we come across occasionally. Egypt J Anaesth. 2015; 31(1):265-6. https://doi.org/10.1016/j. egja.2015.03.003 DOI: https://doi.org/10.1016/j.egja.2015.03.003

Kirkeby OJ, Risoe C, Vikland R. Significance of a high erythrocyte sedimentation rate in general practice. Br J Clin Pract. 1989; 143(7):252-4. https://doi.org/10.1111/j.1742-1241.1989. tb08732.x DOI: https://doi.org/10.1111/j.1742-1241.1989.tb08732.x

Patel KV, Semba RD, Ferrucci L, Newman AB, Fried LP, Wallace RB, Bandinelli S, Phillips CS, Yu B, Connelly S, Shlipak MG, Chaves PH, Launer LJ, Ershler WB, Harris TB, Longo DL, Guralnik JM. Red cell distribution width and mortality in older adults: A meta-analysis. J Gerontol A Biol Sci Med Sci. 2015; 65:258-65. https://doi.org/10.1093/gerona/glp163 PMid:19880817 PMCid:PMC2822283 DOI: https://doi.org/10.1093/gerona/glp163

Förhécz Z, Gombos T, Borgulya G, Pozsonyi Z, Prohászka Z, Jánoskuti L. Red cell distribution width in heart failure: Prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am Heart J. 2009; 158:659-66. https://doi.org/10.1016/j. ahj.2009.07.024 PMid:19781428 DOI: https://doi.org/10.1016/j.ahj.2009.07.024

Kim J, Kim YD, Song TJ, Park JH, Lee HS, Nam CM, Nam HS, Heo JH. Red blood cell distribution width is associated with poor clinical outcomes in acute cerebral infarction. Thromb Haemost. 2012; 108:349-56. https://doi.org/10.1160/TH12-03- 0165 PMid:22739700 DOI: https://doi.org/10.1160/TH12-03-0165

Seyhan EC, Ozgül MA, Tutar N, Omür I, Uysal A, Altin S. Red blood cell distribution and survival in patients with chronic obstructive pulmonary disease. COPD. 2013; 10:416-24. https:// doi.org/10.3109/15412555.2012.758697 PMid:23537076 DOI: https://doi.org/10.3109/15412555.2012.758697

Lou Y, Wang M, Mao W. Clinical usefulness of measuring red blood cell distribution width in patients with hepatitis B. PloS One. 2012; 7:37644. https://doi.org/10.1371/journal. pone.0037644 PMid:22649548 PMCid:PMC3359289 DOI: https://doi.org/10.1371/journal.pone.0037644

Yeşil A, Senateş E, Bayoğlu IV, Erdem ED, Demirtunç R, Kurdaş Övünç AO. Red cell distribution width: A novel marker of activity in inflammatory bowel disease. Gut Liver. 2011; 5:460- 7. https://doi.org/10.5009/gnl.2011.5.4.460 PMid:22195244 PMCid:PMC3240789 DOI: https://doi.org/10.5009/gnl.2011.5.4.460

Grant BJ, Kudalkar DP, Muti P, McCann SE, Trevisan M, Freudenheim JL, Schünemann HJ. Relation between lung function and RBC distribution width in a population-based study. Chest 2003; 124:494-500. https://doi.org/10.1378/ chest.124.2.494 PMid:12907534 DOI: https://doi.org/10.1378/chest.124.2.494

Tanindi A, Topal FE, Topal F, Celik B. Red cell distribution width in patients with prehypertension and hypertension. Blood Press. 2012; 21:177-81. https://doi.org/10.3109/08037051.2012.645335 PMid:22243409 DOI: https://doi.org/10.3109/08037051.2012.645335

Isik T, Kurt M, Ayhan E, Tanboga IH, Ergelen M, Uyarel H. The impact of admission red cell distribution width on the development of poor myocardial perfusion after primary percutaneous intervention. Atherosclerosis. 2012; 224:143- 9. https://doi.org/10.1016/j.atherosclerosis.2012.06.017 PMid:22748279 DOI: https://doi.org/10.1016/j.atherosclerosis.2012.06.017

Li N, Zhou H, Tang Q. Red blood cell distribution width: A novel predictive indicator for cardiovascular and cerebrovascular diseases. Dis Markers. 2017; 2017:7089493. https://doi.org/10.1155/2017/7089493 PMid:29038615 PMCid: PMC5606102 DOI: https://doi.org/10.1155/2017/7089493

García-García CR, Parrón T, Requena M, Alarcón R, Tsatsakis AM, Hernández AF. Occupational pesticide exposure and adverse health effects at the clinical, haematological and biochemical levels. Life Sci. 2016; 145:274-83. https://doi.org/10.1016/j. lfs.2015.10.013 PMid:26475762 DOI: https://doi.org/10.1016/j.lfs.2015.10.013

Wilson RW, Taylor EW. The physiological responses of freshwater rainbow trout on Oncorhynchus mykiss during acutely lethal copper exposure. J Comp Physiol B. 1993; 162:38–47. https://doi. org/10.1007/BF00309663 DOI: https://doi.org/10.1007/BF00309663

Amin MA, Amin AP, Kulkaini HR. Platelet Distribution Width (PDW) is increased in vaso-occlusive crisis in sickle cell disease. Ann J Haematol. 2004; 83(6):331-5. https://doi.org/10.1007/ s00277-003-0833-8 PMid:15052371 DOI: https://doi.org/10.1007/s00277-003-0833-8

Abdelhamid H, Mohammed MN, Alrazig SA, TajAlser T, Suliman E, Allah KA, Muzamil N, Ahmed ES, Albakry MM, Altaib Z. Assessment of allergy marker leucocyte (Eosinophil) count and other blood cell parameters among workers at Berber cement factory, Berber governorate, River Nile state, Sudan, 2017. Global J Med Res: C Microbiol Pathol. 2017; 17(1):1–3.

Patel AA, Yona S. Inherited and environmental factors influence human monocyte heterogeneity. Front Immunol. 2019; 10:2581. https://doi.org/10.3389/fimmu.2019.02581 PMid:31787976 PMCid:PMC6854020 DOI: https://doi.org/10.3389/fimmu.2019.02581

Ashwini S, Swathi K, Saheb SH. Effects of cement dust on haematological and liver function test parameters. Int J Curr Pharm Clin Res. 2016; 6(2):70-3.

Piccoli C, Cremonese C, Koifman R, Koifman S, Freire C. Occupational exposure to pesticides and haematological alterations: A survey of farm residents in the South of Brazil. Cien Saude Colet. 2019; 24(6):2325-40. https://doi.org/10.1590/1413- 81232018246.13142017PMid:31269189 DOI: https://doi.org/10.1590/1413-81232018246.13142017

Pollard KM. Silica, silicosis, and autoimmunity. Front Immunol. 2016; 7:97. https://doi.org/10.3389/fimmu.2016.00097 PMid:27014276 PMCid:PMC4786551 DOI: https://doi.org/10.3389/fimmu.2016.00097

Dai W, Liu F, Li C, Lu Y, Lu X, Du S, Chen Y, Weng D, Chen J. Blockade of Wnt/β-catenin pathway aggravated silicainduced lung inflammation through Tregs regulation on Th immune responses. Med Inflam. 2016; 2016:6235614. https:// doi.org/10.1155/2016/6235614 PMid:27069316 PMCid: PMC4812397 DOI: https://doi.org/10.1155/2016/6235614