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Abstract

Bead on plate geometry gives a priori knowledge about weld characteristics. In the current work, bead on plate experimental data are
taken from one previously published work and different training algorithms are applied to get trained with the experimental data.
Experiments were done using four-factor, five-level central composite rotatable design with full replication technique using response
surface methodology. The working range of each parameter was decided upon by inspecting the weld bead for smooth appearance
and the absence of visible defects. Bead of Super Duplex Stainless Steel was deposited on low carbon steel substrate using flux cored
arc welding. An attempt is made in this work to predict the bead geometry parameters using Artificial Neural Networks (ANN).
Effectiveness of three different ANN training functions are compared to choose the best model of these three. TRAINLM (Levenberg-
Marquardt) algorithm is found to be the most appropriate training function for prediction of bead geometry in this work.

Keywords: Welding, FCAW, Bead on Plate welding, Super Duplex Stainless Steel, Neural Networks, ANN, Prediction.

1.0 INTRODUCTION

Various engineering components and structures are subjected
to corrosive, or erosive, type hostile environment, and they fag
out fast that need to be repaired or replaced in a frequent
manner. It costs lot of money and time. To get rid of this
problem, either this structure or component is to be made of
good corrosion resistive alloys or coated with a layer of desired
thickness of these alloys. The first one is quite costlier than the
other one. There are various surface improvement methods by
which it can have enhanced corrosion resistance properties of
the components. Cladding is a type of thermal surface
improvement method by which increment in corrosion
resistance property can be achieved to some extent. Arc
welding process is one of the ways by which cladding can be
done[1,2].
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Flux cored arc welding is an efficient, semi-automatic arc
welding process that is quite similar to gas metal arc welding
(GMAW) process. Like GMAW, this process also depends upon
various parameters. Proper selection and observation of these
process parameters helps to achieve a desired welding joint.
This process is quite useful and reliable than the other existing
arc welding processes. Basically Flux Cored Arc Welding
(FCAW) is a fusion welding operation obtained by an electrical
arc made between a nonstop electrode and the workpiece to
generate the weld pool [1-4]. In this welding process, tubular
electrode is endlessly complied and has a fluxed core that
contribute extra shielding capacities to the welding method
with or without extra safeguard from an outwardly equipped
protection gas. The core is especially made by excrement
formers, deoxidizers, arc pacifiers, and alloying elements.
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FCAW technique have received great consideration from
welders as a result of flux cored wire have heaps of benefits like
exceptional productivity, top quality welds, deep penetration,
less spatter attachment behaviour, greater deposition rates,
larger welding speed and value blessings Cary et al. [4].
According to Palani et al. [5], the operational criteria for FCAW
ought to be considered and classified to facilitate welding
automation. Getting required weld quality needs admissible
method to adopt to get required bead geometry and shape.
Also other researchers outlined the scope of utilization of FCAW
employing duplex stainless steel in fabrication of chemical
cargo carriers [6].

A number of research works was carried out [7-11] by a group
led by Das on the formation of weld bead of austenitic and
duplex stainless steel on low carbon steel. After obtaining
optimal bead profile corresponding to high bead width and
height of reinforcement, they went forward for weld cladding
to have desired corrosion resistance. Otherwise, high depth of
penetration is required in a weld bead if one wishes to have
good weld strength [1,2]. While Saha et al. [8], Bose and Das
[10] and Saha et al. [11] carried out bead on plate experiments
using austenitic stainless steel wire electrode to explore the
desired bead geometry to go forward to cladding through
GMAW process, Mondal et al. [7] and Saha and Das [9] studied
the effect of heat input on corrosion aversion of duplex
stainless steel (E2209 T0-1) cladding on low carbon steel flats
by flux cored arc welding (FCAW) process.

Optimization is widely used in finding out the optimum solution
without conducting repeated physical operations. Classical
methods of optimization are less used nowadays as they are
time-taking and vital to collect data from experiments.
Therefore, some heuristic algorithms are introduced as a
modern optimization technique. They are powerful learning
tools and widely used for further operation, prediction,
developing mathematical models, etc. Among many heuristic
algorithms, the following are pretty standard- Artificial Neural
Networks (ANN), Genetic Algorithm (GA), Simulated Annealing
(SA), Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO) and many more.

Artificial Neural Networks (ANN) is a parallel operating system
simulating the neurons of a human being. They are connected
with coefficients or weights which construct the structure of
the Neural Networks (NN) [12]. The processing elements have
weighted inputs, transfer function and outputs for processing
information. Each neuron always receives information from the
neurons of the previous layer and after performing
computations on that information transfers it to the neurons of
the next layer. Among many models of NN, the Back
Propagation Neural Networks (BPNN) is a known model for
fault detection and prediction in different applications [13-30].
ANN was applied in estimation of melt temperature profile [13]
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as well as for pressure control [14] in injection moulding, and
also in finding out bend angle of sheet metal bending by laser
beam [15], monitoring of cutting tool wear [17-19,22], weld
bead geometry determination [21,23,28], surface roughness
estimation during machining [24], estimating drilling burr
formation [25], finding out performance of abrasive jet drilling
[26], etc. In another work, ANN was reported to have
determined the weld sequence to obtain minimum distortion
[27], while ANN was also applied to determine the viscosity of
multi-phase fluid flow system to facilitate transportation of
magnetite ore-water slurry [20].

In a recent work, weld characteristics was tried [29] to
estimate using regression analysis and neural networks related
to dissimilar welding of AISI 304 and EN 8 steels through metal
active gas welding. In another recent research work [30],
possibilities of Artificial Intelligence-Enabled Feedback Control
System in Robotized Gas Metal Arc Welding were explored
using ANN.

MATLAB software can be used to design the ANN [31]. For
complex problems, Multi-Layer Perceptron (MLP) is the best
model as it overcomes the drawback of the single-layer
perceptron by adding more hidden layers. In a feed forward
multilayer perceptron network, input signals are multiplied by
the connection weights, summed up and then directed to a
transfer function to give output for that neuron. The transfer
function (purelin, Tan-sigmoid, or logi-sigmoid) executes on
the weighted sum of the input of neuron(s). In the present
work, different training algorithms and different number of
neurons in the hidden layer are tried to find out the minimum
error model of ANN to estimate bead geometry parameters
accurately as far as possible.

2.0 TRAINING FUNCTION

There are three types of training algorithm generally used in
ANN tool box. These are Gradient Descent algorithm,
Conjugate Gradient algorithm, and Quasi-Newton algorithm
[12,16].

2.1 Gradient Descentalgorithms

Among three algorithms, Gradient Descent algorithm is the
most powerful training algorithm. It uses negative gradient of
performance function to updates weights and biases.

Gradient Descent back propagation algorithm (traingd)
measures the outcome of different errors and by adjusting the
weight in the descending gradient direction calculates the
gradient of the error. Gradient Descent along with Momentum
(traingdm) algorithm acts like low pass filter, that means, it will
ignore small deviation in error surface [32]. Resilience back
propagation (trainrp) training function completely omits the
effect of magnitude of partial derivative [33].
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2.2 Conjugate Gradientalgorithms

When a search is performed along the conjugate direction, the
basic gradient descent is called by Conjugate gradient
algorithm. This type of algorithm consumes little more disk
space than the other algorithms. So, it is good for use in a
network with large number of weights [34].

Like other conjugate training functions, Scaled Conjugate
Gradient (trainscg) does not need to search a line at each
iteration. To avoid line search per learning iteration, step size
scaling mechanism is used. This training function does require
more iterative steps than any other conjugate gradient
algorithm. However, number of computations at each iteration
decreases as no line search is conducted [35]. Ratio of norm
square of current gradient to norm square of previous gradient
is called as Conjugate Gradient back propagation with Fletcher-
Reeves Updates (traincgf). This training function is faster than
any other algorithm, however it is problem dependent [36].
Ratio of the inner product of previous change in gradient with
current gradient to norm square of previous gradient is called
Conjugate Gradient back propagation with Polak-Riebre
Updates (traincgp) training function.

2.3 Quasi-Newton algorithms

The method introduced by Newton shows faster evaluation of
optimal point than the conjugate gradient method. Hessian
matrix with second derivatives is used in this type of algorithm.

In Quasi-Newton algorithm, it doesn't require calculation of
second order derivatives. In each iteration, it updates Hessian
matrix for obtaining better results.

BFGS (Broyden—Fletcher—Goldfarb—Shanno) (trainbfg)
method follows hill-climbing optimization system. Necessary
parametric combination to achieve optimal point is gradient set
to be zero [32]. It needs large storage as well as rigorous
computation compared to conjugate gradient method.

Levenberg—Marquardt back propagation (trainlm) is a
combination of multivariate, sum of squares of non-linear real-
valued functions. In each iteration, it reduces the performance
function. That is why Trainlm is the fastest and mostly used
training algorithm. It is suitable for moderate size of networks
[37].

3.0 TRANSFER FUNCTION

In the Linear time invariant system, relations between input
and output data are represented by Transfer function. Three
types of Transfer functions are found in MATLAB (Neural
network tool box).

Log-sigmoid transfer function or LOGSIG (Fig. 1(a)) becomes
a commonly used transfer function. Input values lie between +
and - and output value lies between 0 and 1 respectively. As the
function is differentiable, it is used in back propagation
algorithm.

a
$ A
*n
0
1 1
a = Logsig (n) = T —— a = Tansig (n) = = | a = Purelin (1)
(a) Log-Sigmoid (b) Tan-Sigmoid (c) Purelin

Fig. 1 : Different transfer functions used in ANN
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Hyperbolic tangent transfer function or TANSIG Fig. 1(b) is
related to bipolar sigmoid. It has output value range of -1
to +1. This function runs faster than other transfer functions
and difference between predicted to experimental values are
usually quite low [12,16,31,32].

Sometimes, experimental models are designed in such a
manner that when operated within nominal parameters,
behave close enough to linear. In this case, PURELIN transfer
function can be imposed.

4.0 EXPERIMENTAL RESULTS AND
DISCUSSION

For this ANN modelling, experimental data are taken from the
work as reported by Balan et al. [38]. Height of reinforcement
(R), depth of penetration (P), bead width (W) which are
standard weld bead geometry parameters, are observed in this
work. Detail of experiment is given in Table 1 and Table 2.
Experiments were done [38] following central composite
rotatable design technique of RSM (Response Surface
Methodology).

Table 1 : Bead on plate experimental details [38]

Welding process FCAW
Base material Low carbon steel (IS: 2062), Carbon Eqv.: 0.42.
Electrode 1.2mm Flux Cored Super Duplex Stainless Steel (FC250716) wire
Shielding gas 80% Argon+ 20% CO,
Wire Feed rate Torch travel speed Nozzle tip distance Torch angle
Coded Value Coded Value Coded Value Coded Value
value (inch/min) value (inch/min) value (inch/min) value (inch/min)
-2 150 -2 100 -2 16 -2 90
-1 175 -1 120 -1 18 -1 100
Input parameter 0 200 0 140 0 20 0 110
1 225 1 160 1 22 1 120
2 250 2 180 2 24 2 130

In the current work, different training algorithms are utilized to
train experimental data obtained from Balan et al. [38].

All these tests related to ANN based estimation are conducted
on Windows 10 (64-bit) operating system having Intel i5 (8th
Generation) processor with 8GB RAM. MATLAB ANN toolbox is
employed for the prediction or estimation.

Three training algorithms with 8 training functions are used to
predict the most suitable combination by which it can be used
for further investigation. For learning process, data are
separated into 70% for training set, 15% for validation set and
15% for testing set. The ANN is set as follows for training
stage: Max epochs = 1000, show = 5, performance goal = 0,
time = Infinitive, max fail = 6. No. of epochs at the end of the
training, least square error during training, validation and
testing are also checked. Number of neurons in hidden layer is
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set according to 10, 20, and 30. Training of the network is
continued thorough an iterative process till 'mean square error'
becomes quite less.

Table 3 shows the outcome obtained through these training
functions. Number of neurons in hidden layer and training
functions adversely affect the Network simulation. TRAINRP
and TRAINSCG do not show considerable change with the
increase in hidden nodes in hidden layer. Closeness of ANN
output with the target (actual value of outputs) is found out by
least square error method in the Regression analysis.
Correlation coefficient (R) close to one indicates the ANN to be
appropriate. Table 3 clearly specifies TRAINLM training
function with PURELIN transfer function to qualify for
appreciably good prediction ability as the R value is near to 1.0
compared to any other combination.
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Table 1 : Bead on plate experimental details [38]

s Mo | v | WEE | Yt | v | e | P
rate distance angle W (mm) R (mm)

1 -1 -1 -1 -1 8.38 4.13 0.371
2 1 -1 -1 -1 9.76 4.61 0.420
3 -1 1 -1 -1 8.04 3.37 0.376
4 1 1 -1 -1 8.43 3.78 0.443
5 -1 -1 1 -1 8.51 4.27 0.327
6 1 -1 1 -1 10.09 4.77 0.378
7 -1 1 1 -1 8.49 3.68 0.342
8 1 1 1 -1 8.99 3.92 0.379
9 -1 -1 -1 1 8.69 3.96 0.330
10 1 -1 -1 1 10.12 4.15 0.407
11 -1 1 -1 1 8.52 3.36 0.338
12 1 1 -1 1 8.60 3.62 0.431
13 -1 -1 1 1 8.92 3.99 0.318
14 1 -1 1 1 10.28 4.68 0.362
15 -1 1 1 1 8.66 3.50 0.330
16 1 1 1 1 9.61 3.87 0.363
17 -2 0 0 0 7.71 3.74 0.327
18 2 0 0 0 10.00 4.09 0.550
19 0 -2 0 0 10.13 4.83 0.419
20 0 2 0 0 8.16 3.40 0.498
21 0 0 -2 0 7.74 3.16 0.834
22 0 0 2 0 9.61 4.09 0.267
23 0 0 0 -2 8.92 3.77 0.377
24 0 0 0 2 9.78 3.52 0.178
25 0 0 0 0 8.43 3.87 0.707
26 0 0 0 0 7.86 3.87 0.707
27 0 0 0 0 8.44 4.28 0.707
28 0 0 0 0 8.43 3.86 0.707
29 0 0 0 0 8.44 3.87 0.529
30 0 0 0 0 8.44 3.86 0.707
31 0 0 0 0 8.43 3.86 0.707
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Table 1 : Bead on plate experimental details [38]

Gradient
Descent PURELIN | TRAINGD 10 0.090267 at 815 0.99752 | 0.99681 | 0.99727
20 0.24418 at 180 0.99206 0.992 0.98572
30 0.039882 at 1000 1000 0.9974 0.99846 | 0.99478
TRAINGDM 10 0.31005 at 40 0.99098 | 0.98829 | 0.98921
20 0.094818 at 1000 0.9975 0.99695 | 0.99684
30 0.10132 at 1000 0.99755 | 0.99591 | 0.9978
TRAINRP 10 0.08526 at 23 0.99753 0.99747 | 0.99835
20 0.1229 at 16 0.99734 | 0.99619 | 0.99748
30 0.055085 at 17 0.99791 | 0.99792 | 0.9959%4
Conjugate
Gradient PURELIN [ TRAINSCG 10 0.45338 at 43 1000 0.99376 | 0.99149 | 0.98765
20 0.063111 at 18 0.99712 0.9979 | 0.99505
30 0.068664 at 19 0.9977 0.99889 | 0.99807
TRAINCGP 10 0.15168 at 1 0.9918 0.9969 | 0.99786
20 0.88383 at 4 0.99169 | 0.98387 | 0.9895
30 0.069294 at 6 0.99766 | 0.99741 | 0.99778
TRAINCGF 10 0.11129 at 8 0.99469 | 0.99749 | 0.98602
20 0.11235at 7 0.99413 | 0.99609 | 0.99047
30 0.34604 at 3 0.99077 | 0.99097 | 0.9901
Quasi
Newton PURELIN | TRAINBFG 10 0.2166 at 10 1000 0.99661 | 0.99417 | 0.99582
20 0.118at7 0.99784 | 0.99588 | 0.99285
30 0.39778 at 4 0.98178 | 0.98818 | 0.98449
TRAINLM 10 0.02861 at 5 0.99696 | 0.99873 | 0.9989
20 0.079523 at 4 0.99765 | 0.99744 | 0.99612
30 0.062682 at 4 0.99795 | 0.9984 | 0.99438
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5.0 MODELLING AND PREDICTION
USING ANN

Artificial Neural Networks (ANN) is employed widely as a tool
for prediction of the responses where clear physical
explanation may be absent, and performing rigorous, time
consuming experiment is difficult. Thirty one experimental
data generated from the experimental runs following Central
Composite Design (CCD) method of Response Surface
Methodology (RSM) are used for neural networks modelling. To
train the neural network for predicting the Bead width,

Hidden Layer

Input

10

Reinforcement and Penetration, back propagation algorithm
was used. The input layer of the network used the TRAINLM
function, when the output layer used the linear (purelin)
function. Hidden nodes were of 10 in number in a single hidden
layer model. Learning rate chosen was 0.01, momentum
coefficient was 0.1, target error, MSE was 0.01, maximum
number of iterations of 1000 epochs was set. Input data were
split into training data (70%), validation data (15%) and
testing data (15%). Trainlm follows Levenberg-Marquardt
algorithm. The optimal architecture of ANN was generated as
shownin Fig. 2.

Output Layer

Fig. 2 : artificial neural network architecture

Best Validation Performance is 0.043361 at epoch 3
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Fig. 3 : Performance curve of trained network for predicting the weld bead geometry
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From the network training sequence, the number of iterations
needed to achieve minimum error can be seen as 9 only as
depicted in Fig. 3. The gradient function of 0.00238 has been
found. Training gain is 0.0001. Validation checking is done with
6 data. Fig. 4 presents the trend of change in training,
validation and testing errors with number of iterations.

Over fitting is not seen. Somewhat similar trend is observed for
training, validation and testing plots. A low error value of
0.043361 at epoch 3 is visible clearly. Nature of change in

Gradient = 0.0023756, at epoch 9

gradient function, training gain (Mu) and validation check with
progress of iteration is presented in Fig. 4. Lowest gradient
value of 0.0023756 is evaluated indicating minimal error
contributed by each neuron. Momentum gain (Mu) is a control
parameter to train the ANN and its value should be <1.
Momentum gain of 0.0001 indicates good capacity of
prediction. Regression plots presented in Fig. 5 show quite
good correlation existing between the input and the target.
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10° Mu = 0.0001, at epoch 9
= |
E .
104 L 2 2 L L 1 L
6 Validation Checks = 6, at epoch 9 *
¢
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b L ]
>2h ’ B
L
(? * 3 ? 4 5 6 7 B 9
9 Epochs

Fig. 4 : Training state of Neural Networks for predicting weld bead geometry
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Fig. 5 : Regression plot showing the progress of training, validation and testing
6.0 RESULTS AND DISCUSSION 10.20 mm are obtained from Experimental No. 14 in both

experimental and predicted approach. Those numbers are

quite similar in nature as error percentage is only -0.80. The
Table 3 shows correlation among the experimental values of maximum and minimum error % are only +9.70 and +0.01. In
Bead width and Predicted values obtained from Artificial Neural Fig. 6, column chart also shows closely between Experimental
Networks operation. The maximum Bead width of 10.28 and and predicted values.
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Table 4 : Different data sets of experimental and predicted values of weld bead width

distance width (mm)
1 -1 -1 -1 -1 8.38 8.41 0.30
2 1 -1 -1 -1 9.76 9.76 0.01
3 -1 1 -1 -1 8.04 7.97 -0.78
4 1 1 -1 -1 8.43 8.35 -0.91
5 -1 -1 1 -1 8.51 8.54 0.40
6 1 -1 1 -1 10.09 10.05 -0.42
7 -1 1 1 -1 8.49 8.54 0.16
8 1 1 1 -1 8.99 8.99 -0.02
9 -1 -1 -1 1 8.69 8.47 -2.51
10 1 -1 -1 1 10.12 9.96 -1.55
11 -1 1 -1 1 8.52 7.72 -9.40
12 1 1 -1 1 8.60 8.55 -0.61
13 -1 -1 1 1 8.92 8.96 0.46
14 1 -1 1 1 10.28 10.20 -0.80
15 -1 1 1 1 8.66 9.50 9.70
16 1 1 1 1 9.61 9.86 2.65
17 -2 0 0 0 7.71 7.73 0.30
18 2 0 0 0 10.00 9.93 -0.73
19 0 -2 0 0 10.13 10.13 -0.03
20 0 2 0 0 8.16 8.72 6.86
21 0 0 -2 0 7.74 7.72 -0.30
22 0 0 2 0 9.61 9.61 -0.01
23 0 0 0 -2 8.92 8.85 -0.74
24 0 0 0 2 9.78 9.73 -0.56
25 0 0 0 0 8.43 8.24 -2.22
26 0 0 0 0 7.86 8.24 4.87
27 0 0 0 0 8.44 8.24 -2.34
28 0 0 0 0 8.43 8.24 -2.22
29 0 0 0 0 8.44 8.24 -2.34
30 0 0 0 0 8.44 8.24 -2.34
31 0 0 0 0 8.43 8.24 -2.22
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Fig. 6 : Column diagram of Experimental and Predicted vales of bead width
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Fig. 7 : Column diagram of Experimental and predicted values of Reinforcement height

Table 5 shows correlation between the Experimental values of
Reinforcement height and Predicted values obtained from
Artificial Neural Networks operation. The maximum
Reinforcement height of 4.83 and 4.79 mm as obtained from
Experimental No. 19 in both experimental and predicted
approach. Those numbers are quite similar in nature as well as
error percentage is only 0.04. The maximum and minimum
error % are only +0.33 and 0.01. In Fig. 7, column chart also
shows quite close between Experimental and predicted values.
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Table 6 shows correlation among the Experimental values of
depth of penetration and predicted values obtained from
Artificial Neural Networks operation. The maximum depth of
penetration of 0.834 and 0.73 mm are obtained from
Experimental No. 21 in both experimental and predicted
approach. Those numbers are not so similar in nature as well
as error percentage is a bit high at 12.34. The maximum and
minimum error % are -95.57 and -3.44. In Fig. 8, column chart
also shows some deviations between Experimental and
predicted values.



INDIAN WELDING JOURNAL Volume 56 No. 3, July 2023

Table 5 : Different data of experimental and predicted values of Reinforcement height

A O R B B R Bl L S
distance (mm)
1 -1 -1 -1 -1 4.13 4.15 -0.02
2 1 -1 -1 -1 4.61 4.63 -0.02
3 -1 1 -1 -1 3.37 3.40 -0.03
4 1 1 -1 -1 3.78 3.73 0.05
5 -1 -1 1 -1 4.27 4.25 0.02
6 1 -1 1 -1 4.77 4.80 -0.03
7 -1 1 1 -1 3.68 3.71 -0.03
8 1 1 1 -1 3.92 3.94 -0.02
9 -1 -1 -1 1 3.96 3.63 0.33
10 1 -1 -1 1 4.15 4.19 -0.04
11 -1 1 -1 1 3.36 3.07 0.28
12 1 1 -1 1 3.62 3.61 0.01
13 -1 -1 1 1 3.99 4.01 -0.02
14 1 -1 1 1 4.68 4.66 0.02
15 -1 1 1 1 3.5 3.69 -0.19
16 1 1 1 1 3.87 3.63 0.24
17 -2 0 0 0 3.74 3.68 0.06
18 2 0 0 0 4.09 4.09 -0.01
19 0 -2 0 0 4.83 4.79 0.04
20 0 2 0 0 3.4 3.64 -0.24
21 0 0 -2 0 3.16 3.25 -0.09
22 0 0 2 0 4.09 4.05 0.04
23 0 0 0 -2 3.77 3.83 -0.06
24 0 0 0 2 3.52 3.54 -0.02
25 0 0 0 0 3.87 3.87 -0.01
26 0 0 0 0 3.87 3.87 -0.01
27 0 0 0 0 4.28 3.87 0.40
28 0 0 0 0 3.86 3.87 -0.02
29 0 0 0 0 3.87 3.87 -0.01
30 0 0 0 0 3.86 3.87 -0.02
31 0 0 0 0 3.86 3.87 -0.02
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Table 6 : Different data sets of experimental and predicted values of Penetration depth

S| e | vy | NGECO | e o |l | %
distance (mm)

1 -1 -1 -1 -1 0.371 0.48 -28.92
2 1 -1 -1 -1 0.42 0.44 -5.68
3 -1 1 -1 -1 0.376 0.45 -20.32
4 1 1 -1 -1 0.443 0.59 -34.16
5 -1 -1 1 -1 0.327 0.28 13.62
6 1 -1 1 -1 0.378 0.40 -5.70
7 -1 1 1 -1 0.342 0.30 11.75
8 1 1 1 -1 0.379 0.58 -54.33
9 -1 -1 -1 1 0.33 0.65 -95.57
10 1 -1 -1 1 0.407 0.28 29.58
11 -1 1 -1 1 0.338 0.67 -97.14
12 1 1 -1 1 0.431 0.48 -11.24
13 -1 -1 1 1 0.318 0.30 4.64

14 1 -1 1 1 0.362 0.32 11.92
15 -1 1 1 1 0.33 0.16 52.82
16 1 1 1 1 0.363 0.44 -20.14
17 -2 0 0 0 0.327 0.31 6.05

18 2 0 0 0 0.55 0.44 20.60
19 0 -2 0 0 0.419 0.45 -6.74
20 0 2 0 0 0.498 0.55 -9.57
21 0 0 -2 0 0.834 0.73 12.34
22 0 0 2 0 0.267 0.29 -7.02
23 0 0 0 -2 0.377 0.39 -3.44
24 0 0 0 2 0.178 0.28 -59.95
25 0 0 0 0 0.707 0.57 18.91
26 0 0 0 0 0.707 0.57 18.91
27 0 0 0 0 0.707 0.57 18.91
28 0 0 0 0 0.707 0.57 18.91
29 0 0 0 0 0.529 0.57 -8.38
30 0 0 0 0 0.707 0.57 18.91
31 0 0 0 0 0.707 0.57 18.91
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Fig. 8 : Column diagram of experimental and predicted values of penetration depth

7.0 CONCLUSIONS

In the context of bead on plate process performance for low
carbon steel substrate using flux cored super duplex stainless
steel filler wire. An attempt is made to predict output
parameters using Artificial Neural Networks (ANN). The
following conclusions are made after the investigations:

By comparison between the chosen three ANN functions,
TRAINLM (Levenberg-Marquardt) is found to be the most
appropriate training function for prediction of bead
geometry.

Various comparison table are found to be stated that,
Experimental and predicted values of Bead geometry are
significant to each other. There values are quite similar.

Also column chart shows similarity to Experimental and
predicted values.

Column chart of experimental and predicted values of
penetration depth shows dissimilarity. Thus not adequate
to predict the bead geometry correctly. So it is not
recommended to further future work.

Therefore, it can be summarized that bead geometry can
well be estimated using an ANN algorithm.
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