Geospatial Comparison of Three Models to Predict Soil Properties in Semi-Humid Region of West Bengal, India

Jump To References Section

Authors

  • Department of Geography, F.M. University, Balasore, Orissa ,IN
  • Bihar Remote Sensing Application Centre, IGSC Planetarium, Bailer Road, Patna-800001 ,IN
  • Department of Geography, Cooch Behar College, Cooch Behar, West Bengal ,IN
  • Department of Geography, Raja N.L.Khan Women’s College, Gope Palace, Medinipur 721102, West Bengal ,IN
  • Regional Development Center, IIT, Kharagpur ,IN

DOI:

https://doi.org/10.24906/isc/2018/v32/i5/180258

Keywords:

Nitrogen (N), Phosphorous (P), Potassium (K), Organic Carbon (OC), Electrical Conductivity (EC), Geostatistical Modelling.

Abstract

Investigation of soil properties are important for sustainable soil nutrient management. This paper presented spatial variability of soil properties at large scale based on GIS based geostatistical model. A total 27 soil samples were collected and physio-chemical analysis in laboratory using standard methods. Three geostatistical models i.e. Inverse distance weighted, radial basis functions and ordinary kriging were used to predict spatial variability of soil properties. The ordinary krigging method has provided is the lowest RMSE, indicated the higher accuracy to predict the soil properties compared to RBF and IDW methods.

Downloads

Download data is not yet available.

Published

2018-09-01

How to Cite

Majhi, R., Bhunia, G. S., Das, T. K., Shit, P. K., & Chattopadhyay, R. (2018). Geospatial Comparison of Three Models to Predict Soil Properties in Semi-Humid Region of West Bengal, India. Indian Science Cruiser, 32(5), 37–47. https://doi.org/10.24906/isc/2018/v32/i5/180258

Issue

Section

Search & Survey

 

References

G.S.Bhunia, P.K. shit, R. Maiti, 2016a. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC), Journal of the Saudi Society of Agricultural Sciences, doi:http://dx.doi.org/10.1016/j.jssas.2016.02.001

W. Zhang, K. L. Wang, H. S. Chen, X.Y. He, J. G. Zhang, 2012. Ancillary information improves kriging on soil organic carbon data for a typical karst peak cluster depression landscape. Journal of the Science of Food and Agriculture, 92(5): 1094−1102.

L. Liu, H. Wang, W. Dai, X. Lei, X. Yang, X. Li, 2014. Spatial variability of soil organic carbon in the forestlands of northeast China. Journal of Forestry Research (2014) 25(4): 867−876.

S. K. Behera, A. K. Shukla, 2015. Spatial distribution of surface soil acidity, electrical Conductivity, soil organic carbon content and exchangeable Potassium, calcium and magnesium in some cropped acid Soils of India. Land Degrad. Develop. 26: 71–79

G. S. Bhunia, P. K. Shit, R. K. Maiti, 2016b. Spatial variability of soil organic carbon under different land useusing radial basis function (RBF).Model. Earth Syst. Environ. 2:17. DOI: 10.1007/s40808015-0070-x

R. S. Phukan, 2015. Soil Health Card (SHC) for Indian Farmers. http://www.mapsofindia.com/myindia/government/soil-health-card-shc-for-indianfarmers

H. Lin, D. Wheeler, J. Bell, and L. Wilding. 2005. Assessment of soil spatial variability atmultiplescales. Ecological Modeling 182:271– 290.

Y. Qiu, B. Fu, J.Wang, and L. Chen. 2010. Spatial prediction of soil moisture content using multiplelinear regression in a gully catchment of the Loess Plateau, China. Journal of Arid Environment74:208–220.

O.O. Joshua, O.O. Evelyn, C.T. Luis, C.O. Azubuike, M.G. Donald 2014. Assessment of Spatial Distribution ofSelected Soil Properties using Geospatial Statistical Tools.Communications in Soil Science and Plant Analysis, 45:2182–2200.

T. M. Palmer, 2003. Spatial habitat heterogeneity influences competition and coexistence in an African acacia ant guild. Ecology 84:2843–2855.

S. Kumar, T. J. Stohlgem, and G. W. Chong. 2006. Spatial heterogeneity influences native and nonnativespecies richness. Ecology 87:3186–3199.

M. H. Young, T. G. Caldwell, D. G. Meadows, L. F. Fenstermaker, 2009. Variability of soilphysical and hydraulic properties at the Mojave global change facility, Nevada: Implications forwater budget and evapotranspiration. Journal of Arid Environments 73:733–744.

S. E. Obalum, J. Oppong, C. A. Igwe, Y. Watanabe, and M. E. Obi. 2013. Spatial variability of uncultivated soils in derived savanna. International Agrophysics 27:57–67.

D. R. Nielsen, O. Wendroth, 2003. Spatial and temporal statistics—Sampling field soils andtheir vegetation. Reiskirchen, German: Catena Verlag GMBH.

R. Webster, M. A. Oliver, 2001. Statistical Methods in Soil Science and ResourceSurvey.Oxford University Press, New York, NY.

K. Sumfleth, R. Duttmann, 2008. Prediction of soil property distribution inpaddy soil landscapes using terrain data and satellite information as indicators. Ecol. Indic. 8: 485-501

L. A. Richards, 1954. Diagnosis and Improvement of Saline and Alkali Soilsâ€, Agriculture Handbook 60, US Department of Agriculture, Washington, DC, P. 160.

M.L. Jackson, 1958. Soil Chemical Analysis. Prentice Hall, Inc., Englewood Cliffs, 111–133.

D. W. Nelson, L. E. Sommers, 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, etc. (eds), Methods of Soil Analysis, Part 3. Chemical methods.Wisconsin, WI, USA: Soil Science Society of America Book Series, 5, 961−1010

S. D. Bao, 2000. Soil and agricultural chemistry analysis.Beijing: China Agriculture Press, p. 495.

J. M. Bremner, 1996. Nitrogen – Total. In: Methods of Soil Analysis – Part 3 -Chemical Methods (Ed.: D.L. Sparks) Madison, Wisconsin, USA: Soil Science Society of America, American Society of Agronomy.pp. 1085-1121

B.V. Subbiah, G. L. Asija, 1956. A rapid procedure for the determination of the available nitrogen in the soil.CurrSci 25:259–260

P. Goovaerts, G. AvRuskin, J. Meliker, Slotnick, M. G. Jacquez, J. Nriagu, 2005. Geostatisticalmodelling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour. Res. 41, W07013.

I. Bogunovic, M. Mesic, Z. Zgorelec, A. Jurisic & D. Bilandzija, 2014.Spatial variation of soil nutrients on sandy-loam soil. Soil and Tillage Research, 144, 174-183

W. Fu, H. Tunney, C. Zhang, 2010.Spatial variation of soil nutrients in a dairy farmand its implications for site-specific fertilizer application.Soil Tillage Res. 106,185–193.

D. McGrath, C. Zhang, O.T. Carton, 2004. Geostatistical analysis and hazard assessment 581 on soil lead in Silvermines area, Ireland. Environ. Pollut. 127,239–248.

A. Gallardo, R. Paramá, 2007. Spatial variability of soil elements in two plant communities of NW Spain.Geoderma 139 (1), 199–208.

V.G.D. Nayanaka, W.A.U. Vitharana, R.B. Mapa Geostatistical Analysis of Soil Properties to Support Spatial Sampling ina Paddy Growing Alfisol. Tropical Agricultural Research Vol. 22 (1): 34 - 44 (2010).

C.A. Cambardella, J.M. Moorman, T.B. Navak, D.L. Parkin, R.F. Karlen, A.E. TurcoandKonopka, 1994.Field Scale Variability of Soil Properties in Central LowaSoils.J.Soil Sci. Soc. of Am. 58, 1501 - 1511.

TP Robinson, G.M. Metternicht 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Computer and Electeronics in Agriculture, 50, 97-108

Y. Li, Z. Shi, C. F. Wu, H. X. Li, F. Li, 2007. Improved prediction and reduction of sampling density for soil salinity by different geostatistical methods. Agricultural Sciences in China, 6, 832841.

K. Johnston, J.M. Ver, Hoef, K. Krivoruchko, Lucas, N. 2001. Using ArcGIS Geostatistical Analyst. ESRI Press: Redlands, CA.

ESRI., 2001. Using ArcGIS Geostatistical Analyst. ESRI Press:Redlands, CA.

Y Xie, T Chen, M Lei, J Yang (2011) Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere 82:468–476

V. Barnett, T. Lewis, 1994.Outliers in Statistical Data, third ed. Wiley, New York.Box, G.E., Cox, D.R. 1964.An analysis of transformations. J. Roy. Stat. Soc. B 26 (2), 211–252.

A. Castrignano, L. Giugliarini, R. Risaliti, N. Martinelli, 2000. Study of spatial relationships among some soil physico–chemical properties of afield in central Italy using multivariate geostatistics. Geoderma 97 (1), 39–60.

K.M.A. Kendaragama, K.M. Seniviratne Banda, and P.T. Bandara, 2003. Influence ofRice Crop Phosphorous Availability in Relation to Phosphorous Fertilizer Application.Annuals of Sri Lanka Department of Agriculture. 5, 129-141.

C.K. Chung, S.K. Chong, E.C. Varsa, 1995. Sampling strategies for fertility on a stoysilt loam soil. Commun. Soil Sci. Plant 26 (5–6), 741–763.

J.M.B. Parfitt, L.C. Timm, E.A. Pauletto, R.O.D. Sousa, D.D. Castilhos, C.L.D. Avila, N.L. Reckziegel, 2009. Spatial variability of the chemical, physical and biologicalproperties in lowland cultivated with irrigated rice. Rev. Bras. Ciênc. Solo 33 (4),819– 830.

A.P. Mallarino, D.B. Beegle, B.C. Joern, 2006. Soil sampling methods for phosphorus: spatial concerns. A SERA-17 position paper.

S. Sokoti, M. Mahdian, Sh. Mahmoodi, A. Ghahramani, 2006.Comparing the applicability of some geostatisticsmethods to predict soil salinity, a case study of Urmiaplain.Pajuhesh and Sazandegi 74:90-98 (In Persian).

M. Zare-Mehrjardi, R. Taghizadehmehrjardi, A. Akbarzadeh, 2010. Evaluation of Geostatistical Techniques for Mapping SpatialDistribution of Soil PH, Salinity and Plant Cover Affected by Environmental Factors in Southern Iran. Not SciBiol 2 (4), 92-103

Most read articles by the same author(s)

1 2 > >>